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Abstract

We sketch a short proof of Gödel’s Incompleteness theorem, based on a few reason-
ably intuitive facts about computer programs and mathematical systems. We supply
some background and intuition to the result, as well as proving related results such as
the Second Incompleteness theorem, Rosser’s extension of the Incompleteness theorem,
the Fixed Point theorem, and Löb’s theorem.

1 Introduction

In 1931, Kurt Gödel proved that any commonly used mathematical system is incomplete, that
is, there are statements expressible in the system which are neither provable nor refutable
in the system.1 Such statements are known as undecidable. Further, he showed that no
commonly used mathematical system can prove itself to be free of contradictions. Gödel’s
surprising and profound results disturbed much of the mathematical community then, and
they remain unsettling today. Any of several celebrated open questions in mathematics—
Goldbach’s Conjecture, the Generalized Riemann Hypothesis, and the Twin Primes Conjec-
ture, to name a few—may remain unsolved forever. Moreover, we may never know (there
is no general procedure for knowing) whether or not a given open problem is decidable. Fi-
nally, we have no way of proving mathematically that the systems we use will never derive
a contradiction.

Gödel’s original 1931 paper spells out his proof in meticulous detail. Most of this detail,
however, is concerned with clarifying two threads of contemporaneous research: (1) formal-
ized mathematics, and (2) computation. Large chunks of the proof are concerned, on the
one hand, with how formal mathematical syntax can be algorithmically manipulated, and on
the other hand, how the notion of algorithm itself admits a rigorous mathematical descrip-
tion. Electronic computers did not exist at the time, and ideas about what is “computable”
or “algorithmic” were in their infancy. No doubt, Gödel was extremely careful with these

∗Computer Science and Engineering Department, University of South Carolina, Columbia, SC 29208
USA. Email: fenner@cse.sc.edu.

1A refutable statement is one whose negation is provable.
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concepts in no small part because people at the time had little good intuition about them.
The downside of so much detail is that it obscures the conceptually simple crux of the proof.

The current ubiquity of electronic computers and networks in our everyday lives has
raised our collective intuition about computation considerably since the 1930s. Computer
programmers certainly have a good sense of what computing can accomplish, but even people
who just use computers routinely have a pretty good idea as well. This intuition can help us
cut through most of the tedious detail in Gödel’s original proof, quickly and neatly exposing
its core idea. The current exposition will attempt to do this.

2 Preliminary Intuitions

I suggest that if you feel you have sufficient background, you skip this entire section on first
reading and go straight to Section 4, except for skimming the four definitions of Compu-
tational Completeness, Computational Formalizability, Consistency, Computational Sound-
ness, and Completeness later in this section. Section 4 contains the key idea of Gödel’s result
(cast in terms of computations), which can be understood with very little preparation.

2.1 Formal Mathematics

Mathematics strives to investigate abstract ideas using reasoning that can be agreed upon
universally. Mathematicians communicate their results using various systems of notation
and of proof. Theorems and proofs written in math journal articles usually mix informal
prose, more formal symbolic expressions, and possibly diagrams. The prose and diagrams
are useful to save time by appealing to certain clear intuitions on the part of the reader.
Intuitions, regardless of how clear they may be to the writer of a proof, may not be shared by
all readers, however. In principle, it should be possible to replace all appeals to intuition in a
proof by a succession of mathematical formulas, adhering to strict syntactical rules, so that
they can be checked for correctness by someone with no intuition for the subject whatsoever.
(This strictly formal approach is never done in practice—at least not yet—because formally
expressing theorems and proofs would produce formulas so long and cumbersome that check-
ing them without the aid of intuition would tax one’s patience, to say the least.) Thus to
avoid any crucial dependence on intuition, which may not be universally held, mathematical
communication is limited to what can ultimately be expressed completely formally, using a
formal mathematical system.

A formal mathematical system consists of two things:

1. syntactical rules for expressing mathematical statements as strings of symbols over
some alphabet of symbols—not unlike the rules describing correct computer programs
written in some programming language—and

2. syntactical rules for establishing the truth of certain statements of the system. Truths
established in the system are the theorems of the system.
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The second component usually breaks down into two parts: axioms and rules of inference.
Axioms are basic statements in the system that are taken to be true a priori. For exam-
ple, the formula (x + y) + z = x + (y + z) might be an axiom expressing the fact that
addition is associative. The system should have rules for deciding whether or not a given
statement is an axiom based solely on its syntax, disregarding any possible meaning intended
for the statement. A rule of inference determines (again, based solely on syntax) when a
mathematical statement can be inferred as a newly established truth (i.e., theorem) based
on previous theorems. A rule of inference typically used in mathematical systems is modus
ponens, written schematically as

A, A→ B
B

The rule states that if A is a theorem and A → B is a theorem, then B is also a theorem.
We say that B follows from A and A → B by modus ponens. Here, the letters “A” and
“B” stand for any statements in the system. The usually intended meaning of “A→ B” is
“A implies B,” or “if A then B,” but the key point here is that the correctness of applying
modus ponens can be checked based entirely on the syntactical structure of the statements
involved, independent of meaning. We’ll assume that modus ponens is a rule of inference in
all formal systems.

A new theorem T in the system can thus be established by a finite sequence of statements
of the system, where T is the last statement in the sequence, and each statement in the
sequence is either an axiom of the system or else follows from previous statements in the
sequence via some rule of inference of the system (e.g., modus ponens). Such a sequence is
a (formal) proof of T in the system. Theorems are just those statements that have proofs.

A statement that has a proof is provable in the system. A statement whose negation has
a proof is refutable in the system (i.e., an established falsehood). A system is consistent if no
statement of the system can be both proven and refuted by the system. A system is complete
if every statement of the system can either be proven or refuted. The First Incompleteness
result of Gödel, which we’ll see in Section 4, states that

Any reasonable [see below] and consistent mathematical system is incomplete,
that is, there are statements expressible in the system that can be neither proved
nor refuted in the system.

Such statements are called undecidable or formally undecidable by the system. Gödel actu-
ally constructs an undecidable statement for a particular reasonable mathematical system,
assumed to be consistent.2 Actually, this is not quite what Gödel proved. As we will see, he
had to assume a property of the system slightly stronger than consistency (but still evidently
true for most systems in common use). Subsequent work by Rosser established the statement
above as it stands (see Section 7).

The Second Incompleteness result of Gödel (see Section 5) states that

2Gödel used a formal system P based on Russell and Whitehead’s Principia Mathematica. Other more
commonly used systems include first-order Peano arithmetic (PA) and Zermelo-Fraenkel set theory (ZFC).
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No reasonable, consistent mathematical system can prove its own consistency.

Neither of these results would be possible without the concept of a mathematical system
with completely formal, syntactic rules for statement manipulation. Such systems are spec-
ified to such exactitude that they themselves can become objects of fruitful mathematical
study. This is exactly what these two results do: treat mathematical systems as math-
ematical objects. In the next subsection, we’ll see how computer programs can serve as
intermediaries for this treatment.

2.2 Computer Programs

When run, computer programs process data. They can read data from, and write data to,
various media, such as files on a disk or other computers via a network. They are good
at manipulating text. Computer programs are themselves written as text in some kind of
programming language, such as Fortran, Cobol, Basic, Lisp, Pascal, Ada, C, C++, Perl,
Java, ML, Haskell, Prolog, SmallTalk, Python, Logo, Foxpro, ad infinitum.

Computer programs frequently process their own text (this is how compilers and inter-
preters work). For example, one program can, when run, read another program in the same
language as input from a text file, and do any number of things with it: check its syntax,
translate it into machine language (compiling), or simulate its execution (interpreting), to
name a few.

2.3 Computer Programs and Mathematics

Computer programs also have highly predictable behavior. What a program does in any finite
interval of time is completely determined, in a well-understood fashion, by the program itself
and its input. A program’s behavior can be expressed mathematically, and many facts about
it and its behavior can be proven in commonly used mathematical systems.

On the other hand, we have seen that a formal mathematical system has statements given
as strings of text, and purely syntactic rules for manipulating them. So one would expect that
various computer programs can be written to process formal mathematics. For instance, a
computer program should be able to read a string of text as input and check whether it forms
a syntactically correct statement in the formal system, and if so, whether or not it is an axiom
of the system. A computer program could read a sequence of statements as input and check
whether or not it constitutes a (syntactically) correct proof in the system, relieving humans
of this mind-numbingly tedious job. A computer program could also generate statements of
the system as output.

Figure 1 depicts this reciprocity between mathematical systems and computer programs.
We will exploit it to prove the two incompleteness results, but first we will describe it more
carefully.

We fix a programming language (one of those listed earlier, say) and assume that all
computer programs we talk about are written in this language. Let F be some mathematical
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Figure 1: How computer programs and mathematical systems relate to each other

system. Two basic properties we will assume about F , and any other mathematical system
we discuss, are these:

Computational Completeness. F is strong enough to express and to prove some ele-
mentary facts about the behavior of any computer program. In particular, if some
computer program halts on some particular input in some given finite number of time
steps, then one can express and prove this fact within F . Also, if the program does
not halt on the input in the specified time, then this fact is also provable in F . Finally,
F can prove whether or not a program outputs any particular given value in any given
finite period of time. More specifically, if a program outputs some value and then halts
without outputting anything else, then F proves this fact.

Computational Formalizability. The rules of F can be rendered in a completely formal,
rigorous, concrete, “mechanical” way, so that statements and lists of statements in F
can be read, manipulated, and generated by computer programs as described above,
and also so that proofs in F can be checked for correctness by a computer program.

These are not outlandish claims, at least not Computational Formalizability, since for-
mulas and proofs can be specified purely syntactically, and statements and proofs can be
stored in, say, a text file that can be read and written by software. As for Computational
Completeness, mathematics wouldn’t be very useful if it couldn’t prove such elementary facts
as these. These two properties are exactly what was meant by a “reasonable” system in the
statement of the first Incompleteness result, above. (An additional property is needed for
the second result; see below.) They restate the reciprocal relationship in Figure 1. If we
compose the two arrows together, we see that computer programs can use mathematics to
analyze themselves, as shown in Figure 2. The proofs of the two incompleteness results will
involve such programs.

We will fix once and for all some arbitrary reasonable (i.e., computationally complete and
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Figure 2: Computer programs can refer to themselves through mathematics.

computationally formalizable) mathematical system F . The Incompleteness theorem holds
for any such F . These systems include first-order Peano Arithmetic (PA) and Zermelo-
Fraenkel Set Theory (ZFC), among others.

Since F is computationally formalizable, we can assume that there are two computer
programs W (short for “well-formed formula”) and B (short for “Beweisung,” the German
word meaning “proof”). W reads a text file s and checks its syntax to determine whether
or not s is a statement of the system F . It outputs “yes” or “no” accordingly, and halts.
B reads two text files p and s. It checks the syntax of both files, and if s is a statement of
F and p is a correct proof of s, then B outputs “yes” and halts; otherwise, B outputs “no”
and halts. B is our proof-checking program, and uses W as a subroutine.3

Also by computational formalizability, we can assume that a program can “cycle through”
all possible statements and proofs of F . After all, statements and proofs are just finite strings
of computer text. So for instance we can exaustively generate strings of text one by one, then
run W on each, discarding the ones where W outputs “no.”. Running through all possible
text strings can be done as follows: first run through all strings of length zero, then all strings
of length one, then all strings of length 2, and so on. There is exactly one string of length
zero, namely, the empty string. There are 256 strings of length 1, one for each of the 256
characters in the standard computer (ASCII) character set. There are 2562 = 65,536 strings
of length 2, i.e., all possible pairs of ASCII characters, and so on. The point is, for any given
length, there are only a finite number of strings of that length, so we will eventually see them
all, then move on to the next higher length. Text strings can be of any length, so there are
infinitely many of them, and so we cannot run through them all in a finite amount of time.
But for any given string s, we will eventually encounter s if we cycle long enough. That is
what we mean by “exhaustively.”4

3How hard is it to write B? Not very. Any student who did well in a class on compilers or automated
proof checking could probably write it in a few weeks. B can also be implemented so that it runs fairly
efficiently, given the sizes of its inputs.

4Again, such a cycling program is not hard to write, but it will run a very long time before it gets to any
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3 Consistency and Computational Soundness

There is another property that we desire for F :

Consistency. One cannot prove both a statement and its negation in F .

In other words, one cannot prove a contradiction. Inconsistent systems are not useful, since
one can prove any statement given a single contradiction. Thus if F is inconsistent, then
all statements in F are provable, whether or not they are true, so F is completely trivial
and unsuitable for use by mathematicians. The systems mentioned above, PA and ZFC, are
(almost) universally believed to be consistent.

Actually, for Gödel’s original Incompleteness theorem, we will need a slightly stronger
property for F than mere consistency:

Computational Soundness. If a given program runs forever on a given input, then there
is no proof in F that that program halts on that input.

This is sort of a converse to computational completeness, which says that if a program
halts, then F proves that it halts. Computational soundness means that if F proves that a
program halts, then it really does halt. We would certainly not want F to be computation-
ally unsound, since it would then prove false statements about the behavior of programs.
Computational soundness implies consistency.5 In Section 7, we will show how to get an
undecidable statement based on consistency alone, without this additional assumption.

Finally, for completeness, we recall the following property that F will almost certainly
not have, and give it a bold header:

Completeness. Every statement in F is either provable or refutable in F .

4 The First Incompleteness Theorem

We are now ready to prove Gödel’s first Incompleteness theorem, which we can now state
fairly precisely.

Theorem 1 (Gödel) Let F be a computationally complete, computationally formalizable
system. If F is computationally sound, then F is incomplete.

Proof. Let P0 be a computer program6 that does the following:

1. P0 reads as input a program P from a text file (it reads from a file and checks that its
contents form a syntactically legitimate program).

nontrivial proof.
5For those who are technically knowledgeable, computational soundness is equivalent to a restricted form

of ω-consistency, dealing only with elementary statements about computer programs.
6P0 would take that student about a month to write.
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2. P0 constructs a formal statement ϕ in the system F that asserts the following:

“P does not halt when run on input P .”

3. P0 cycles through all possible text strings looking for a proof of ϕ in the system F
(using B as a subroutine).

4. If P0 ever finds a proof of ϕ in F , then P0 outputs “P runs forever” and halts. Other-
wise, P0 will never find such a proof, and so it will run forever.

Now suppose we run P0 on itself, i.e., with input P0. What can happen? Either P0 halts
on input P0 or it doesn’t. If P0 halts on P0, then we know that F proves the statement,

“P0 halts when run on input P0,”

because F is assumed to be computationally complete. But P0 halting on input P0 means
that it discovered a proof in F of the statement,

“P0 does not halt when run on input P0.”

Thus F proves two contradictory statements, and hence F is inconsistent, let alone compu-
tationally unsound.

So since we assume that F is computationally sound, and hence consistent, it must be
that P0 does not halt on input P0. But this means that P0 never finds the proof it is looking
for, namely, a proof in F of

“P0 does not halt when run on input P0.”

Since P0 checks all possible proofs exhaustively, it must be that no such proof exists. Let G
be this last statement above (G is known as the Gödel sentence). We must conclude that
G is true but unprovable in F . Note that this conclusion follows from the consistency of F
alone; the computational soundness assumption is not needed here.

Now since F is in addition computationally sound, there likewise can be no proof in F
of the statement,

“P0 halts when run on input P0,”

which is the negation of G. Thus G can neither be proven nor refuted in the system F . 2

5 The Second Incompleteness Theorem

The argument above might appear paradoxical if taken too informally: we have just proved
that G is true but not provable. But didn’t we just prove that G is true, so G is provable
after all? The way out of this paradox leads to Gödel’s second Incompleteness theorem.

We actually didn’t prove that G is true unconditionally. What we proved, at least in the
first part, was the statement,
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“If F is consistent, then G is true.”

Call this statment HF . This HF can be expressed formally in F (provided F is computa-
tionally complete and computationally formalizable), as we will now see. First we express
the statement

“F is consistent”

formally in F . This statement is denoted “Con(F ).” Consider a computer program FindContradiction

that halts if and only if F is inconsistent: FindContradiction searches exhaustively for a
proof in F of some contradiction, i.e., a statement and its negation. If FindContradiction
ever finds such a proof, it halts; otherwise, it runs forever. Such a program exists because of
the computational formalizability of F . But then Con(F ) is just equivalent to the statement,

“FindContradiction does not halt,”

which is formally expressible in F by computational completeness. So we can just define
Con(F ) to be the formal rendering in F of this statement, “FindContradiction does not
halt.” But now HF is of the form, “Con(F )→ G,” so HF is formally expressible in F .

Now let’s make another reasonable assumption about F :

Formal Reflection (I). HF is provable in F .

That is, F is strong enough to capture the informal proof of HF we gave in the last section.
(PA, ZFC, and many other systems all share this additional property.) So in F there is a
proof of HF . But we already know that there is no proof of G in F , provided F is consistent.
The only way to reconcile these two facts is for there to be no proof in F of Con(F ). For
if there were a proof of Con(F ) in F , then combining this proof with the proof for HF and
then using modus ponens would immediately yield a proof of G in F , which we already know
cannot exist if F is consistent. Thus we’ve shown the following.

Theorem 2 (Gödel) If F is computationally complete, computationally formalizable, con-
sistent, and formally reflective (I), then Con(F ) is not provable in F .

Of course, if F is inconsistent, then Con(F ) is provable in F , since all statements are
provable in F .

If F is also computationally sound, then Con(F ) is not refutable in F , either. To see this,
consider our computer program FindContradiction above. Since F is computationally
sound, it is also consistent, so FindContradiction will run forever. Thus by computational
soundness, F does not prove the statement,

“FindContradiction halts,”

which is just the negation of Con(F ). So Con(F ) is formally undecidable.
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6 Stronger Systems

We can neither prove nor refute G in F , assuming F is computationally sound. Can we
prove G in a stronger system? Perhaps the problem with F is that it is too weak. Can we
strengthen F to a new consistent system F ′ which can decide the statements that cannot
be decided in F? We can always add G as a new axiom to F , for example. Then G is
trivially true in the stronger system, which is still consistent. Perhaps more systematically,
we can add Con(F ) as a new axiom to F , to get a new consistent system F ′ that proves G
and perhaps many other statements undecidable in F . The problem is that F ′ will itself
be subject to the Incompleteness theorem, so F ′ will have its own share of undecidable
statements. We could then add Con(F ′) as a new axiom, obtaining a new system F ′′, and
so on. This process will never end up with a complete system, since whenever we stop, the
system we’ve built is still susceptible to the Incompleteness theorem.

Incidentally, if we add the negation of G as a new axiom to F , we also get a consis-
tent system. This new system is not computationally sound, however, because it proves
(axiomatically) the statement,

“P0 halts when run on input P0,”

which is false.

7 Rosser’s Extension

In Section 4 we constructed a statement G that is undecidable in the system F , but we had
to assume the hypothesis that F is computationally sound, which (as we just saw) is strictly
stronger than just assuming that F is consistent. Can we get an undecidable statement just
on the assumption that F is consistent? Yes we can, via a trick due to Rosser.

We describe a computer program P1 that is similar to P0, but that differs from P0 in a
few crucial details. The new trick is to look simultaneously for a proof of a statement and a
proof of the statement’s negation. P1 behaves as follows:

1. P1 reads as input a program P from a text file (it reads from a file and checks that it
constitutes a legitimate program).

2. P1 constructs two formal statements in the system F :

ϕ1 = “P outputs ‘yes’ when run on input P ,”

and

ϕ2 = “P does not output ‘yes’ when run on input P .”

Note that ϕ2 is just the negation of ϕ1.

3. P1 cycles through all possible text strings looking for either a proof of ϕ1 or a proof of
ϕ2 in the system F (using B as a subroutine).
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4. If P1 finds a proof of ϕ1 in F , then P1 immediately outputs “no” and halts, without
looking any further. If P1 finds a proof of ϕ2 in F , then P1 immediately outputs “yes”
and halts, without looking any further. Otherwise, P1 will never find a proof of either
statement, and so it will run forever without outputting anything.

Assume that F is consistent. As we did in Section 4, we now consider what can happen
when P1 runs on input P1. Suppose first that P1 outputs “yes.” Then it must have found a
proof in F of the statement,

“P1 does not output ‘yes’ when run on input P1.”

But by the computational completeness of F , there is also a proof in F of this statement’s
negation, namely,

“P1 outputs ‘yes’ when run on input P1.”

Thus F is inconsistent, contrary to our assumption.
So suppose then that P1 outputs “no.” Then P1 found a proof in F of

“P1 outputs ‘yes’ when run on input P1.”

But in this case P1 halts without outputting “yes,” and so by computational completeness,
F also proves the statement,

“P1 does not output ‘yes’ when run on input P1,”

which just negates the statement above it. Thus F is inconsistent in this case as well.
So we must have that P1 runs forever. This means that there is no proof in F of either

of the previous two statements, since P1 did not find one. That is, the statement,

“P1 outputs ‘yes’ when run on input P1”

is neither provable nor refutable in F . This statement is called the Rosser sentence and is
denoted by R. We have shown

Theorem 3 (Rosser) If formal system F is computationally complete, computationally
formalizable, and consistent, then R is neither provable nor refutable in F .

Note that we only used the assumption that F is consistent to show that R is undecidable;
we did not need the further assumption that F is computationally sound.
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8 A Fixed Point Theorem

All the results above and more are special cases of a simple yet powerful theorem about
reasonable systems F , together with some assumptions about F being strong enough to
capture certain forms of elementary reasoning. The theorem, known as the Fixed Point
Theorem, asserts that for any F -expressible property ϕ, there is a statement in F which is
essentially says, “I have property ϕ.” We can, for instance, apply the Fixed Point Theorem
to properties such as “is not provable” to immediately get the first Incompleteness theorem.
We give some background first before stating and proving the Fixed Point Theorem.

Until now, we’ve been assuming that statements in F are simple assertions of fact, and
have a single truth value, i.e., either true or false. More generally, a formula or predicate in
F is a statement that may have one or more placeholders that can refer to objects that are
supplied later. For example, the formula,

“x is a prime integer”

has a single placeholder x that potentially stands for any object. We sometimes call x a free
variable. The formula above does not have a truth value as it stands; it only acquires a truth
value when some object is substituted for x, and the truth value depends on the object. So,

“17 is a prime integer”

is a true statement, whereas

“8 is a prime integer”

and

“Arnold Schwarzenegger is a prime integer”

are false statements. A formula with no free variables is called a closed formula or sentence,
so the above three statements are sentences. Sentences have definite truth values; formulas
with free variables only have “potential” truth values. We say that an object satisfies a
formula if substituting the object for the free variable x makes the formula true. Thus 17
satisfies the formula, “x is a prime integer,” but 8 and Arnold Schwarzenegger do not.

A formula may contain more than one variable, or the same variable in more than one
place. The same object must be substituted for each occurrence of the same variable. For
example, consider the two formulas,

“x is a program that halts when run on input x”

and

“x is a program that halts when run on input y.”

If we substitute the program FindProof for x in the first formula, we must make the same
substitution at both occurrences of x, yielding the statement,

12



“FindProof is a program that halts when run on input FindProof.”

This statement is false, since FindProof only halts when given a provable statement, but
FindProof is a program, not a statement.7 We could rephrase the first formula as,

“x is a program that halts when run on itself as input.”

We can make different substitutions for x and for y in the second formula, however:

“FindProof is a program that halts when run on input ‘0 = 0’.”

This is a true statement.
As we just saw, formulas of F can also be treated as objects, since they are just strings

of text, and F can say things about them. For example, the formula,

“x is a (syntactically correct) formula”

is formally expressible in F . This fact follows from computational completeness: Let Wf be
a program that reads a text string as input, checks its syntax, and outputs “yes” if the string
conforms to the syntax of a formula of F , and “no” otherwise. Then the formula above can
be rendered into the equivalent form,

“Wf outputs ‘yes’ on input x,”

which is more clearly seen to be expressible in F because F is computationally complete.
Here’s one final example. By computational completeness, the formula,

“x is a formula with no free variables”

is expressible in F , because we can imagine a program that first checks that its input is a
formula, then checks that it has no free variables. The formula becomes a true statement
when “1 + 1 = 3” is substituted for x, and it becomes false when “x+ 1 = 3” is substituted
for x. If we write out a formula where another formula is substituted for a free variable, we
keep our substituted formula in quotes to be clear that it is an object and not part of the
larger formula. For example,

“ ‘x+ 1 = 3’ is a formula with no free variables”

is how we would write the false statement above. This use of quotes is significant because it
can make subtle distinctions. For example,

“x is variable name”

is a formula with a free variable x, whose truth value depends on what object is substituted
for x. Whereas,

7We assume that the allowed syntax for computer programs and the allowed syntax for statements of F
are mutually exclusive, so that a program can never be mistaken for a formula or vice versa.
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“ ‘x’ is variable name”

is a true sentence that refers to the string object “x,” which is indeed a variable name.
We are now ready to state the Fixed Point Theorem.

Theorem 4 (Fixed Point Theorem) Suppose that F is computationally complete and
computationally formalizable. Let ϕ be any formula of F with only one free variable x
(which nevertheless may occur any number of times in ϕ). There exists a sentence Gϕ of F
such that F proves the statement,

“Gϕ is true if and only if ‘Gϕ’ satisfies ϕ.”

We can restate this more succinctly. Given ϕ as above, for any object o, we’ll let “ϕ(o)”
denote the sentence obtained by substituting o for the variable x in ϕ. Theorem 4 says that
there is a sentence Gϕ that is provably (in F ) equivalent to ϕ(“Gϕ”). In other words, there
is a sentence Gϕ that “says,” “ϕ holds for me,” or, “I have property ϕ,” or “I satisfy ϕ,” or
any number of equivalent rephrasings, and this fact is provable in F . We say that Gϕ is a
fixed point of the formula ϕ.

Proof. Let S be a program that does the following:

1. S reads a string of text σ as input.

2. S checks whether σ is a formula of F with at most one free variable x, and if not, S
halts with no output.

3. Otherwise, S finds every occurrence of the free variable x and replaces it with the string
“σ” (including the quotes), producing the sentence σ(“σ”), which it outputs and then
halts.

The program S exists by computational formalizability. Suppose ϕ is the formula given in
the statement of the Theorem. Let ξϕ be the formula,

“S outputs something when run on input x, and this output satisfies ϕ.”

By computational completeness, ξϕ is formally expressible in the system F . It is a formula
with one free variable x. Now we define Gϕ to be the output of S on input ξϕ. Letting
“⇐⇒ ” denote “if and only if,” the following equivalences are provable in F :

Gϕ ⇐⇒ ξϕ(“ξϕ”) ⇐⇒ ϕ(“ξϕ(‘ξϕ’)”) ⇐⇒ ϕ(“Gϕ”).

The first and third equivalences hold because Gϕ and ξϕ(“ξϕ”) are the same formula, and
thus the left- and right-hand sides are the same string, making the equivalence a logical
tautology in each case. The second equivalence comes from substituting “ξϕ” for x in the
formula ξϕ, and noting that in this case F proves that S outputs “ξϕ(‘ξϕ’)” and nothing else.
2

How are Gödel’s and Rosser’s theorems special cases of Theorem 4? Let FindProof be
the program that
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1. reads as input a formal statement ϕ in F (given as a text string), then

2. looks exhaustively for a proof in F of ϕ, halts if it ever finds one, or else runs forever.

Then let π be the formula,

“FindProof does not halt on input x.”

Then Gπ, which says in effect, “I am not provable,” is essentially the Gödel sentence G of
Section 4, and the same reasoning we used there also applies here. Likewise, let Rosser be
the program that

1. reads as input a formal statement ϕ in F (given as a text string), then

2. looks exhaustively for a proof in F of either ϕ or its negation, outputting “yes” if it
ever finds a proof of ϕ, or “no” if it ever finds a proof of ϕ’s negation, or else runs
forever, not outputting anything.

Then let ρ be the formula,

“Rosser does not output ‘yes’ on input x.”

Then Gρ is essentially the Rosser sentence R given in Section 7, which says, “A proof of my
negation will be found before any proof of me will be found.”

We can show more. There was nothing really mysterious or tricky about how we con-
structed Gϕ from ϕ. After a little reflection, it becomes clear that this process can be
automated. That is, there is a “fixed point-producing program” FixedPoint which outputs
Gϕ given input ϕ.

We can get the Second Incompleteness Theorem as a corollary to Theorem 4 for a reason-
able, formally reflective (I) system F . The argument goes like this: Suppose that F proves
Con(F ). We’ll conclude that F is inconsistent. By formal reflection (I) and modus ponens,
F also proves the Gödel sentence Gπ above. So the FindProof program will eventually halt
on input “Gπ.” By computational completeness, F must then prove

“FindProof halts on input ‘Gπ’.”

But by Theorem 4 and elementary logic, F also proves

“If Gπ, then ‘Gπ’ is not provable,”

so again by modus ponens, F proves

“ ‘Gπ’ is not provable,”

which, stated more formally, is

“FindProof does not halt on input ‘Gπ’.”

So we see that F proves contradictory statements, and hence it is inconsistent.
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8.1 Löb’s Theorem

In the 1950s, Henkin asked about the sentence G¬π, which proudly proclaims, “I am prov-
able.”8 Is this statement provable? There is no easy heuristic to decide this: if G¬π is
provable, then it is true, so there is no violation of soundness. If G¬π is not provable, then
it is false. No problem there, either.

By a subtle and nonintuitive proof, Löb showed that the self-esteem of G¬π is justified;
it is indeed provable.

Theorem 5 (Löb) If ϕ is any statement such that F proves

“If ϕ is provable, then ϕ is true,”

then F proves ϕ.

The statement,

“If ϕ is provable, then ϕ is true”

is as close as one can get to formally stating in F that F is sound—at least with respect to
ϕ. So one implication of Löb’s theorem is that F cannot prove such a soundness assertion,
except in the trivial case where F already proves ϕ.

The proof uses the Fixed Point theorem together with some additional reasonable prop-
erties of F and the program FindProof. Let Prov be the formula, “x is provable (in F ),”
or more precisely, “FindProof halts on input x.” The basis of all our assumed properties
is that the FindProof program is written in a reasonably transparent way, and that F can
thus prove some basic facts about the behavior of FindProof (which, incidentally, are true
by virtue of the rules for proving theorems in F ). The first property follows immediately
from computational completeness alone and does not depend on how FindProof is written:

Adequacy. For any sentence ϕ, if F proves ϕ, then F also proves Prov(ϕ).

This is because if F proves ϕ, then FindProof halts on input ϕ, and hence F proves this
fact, i.e., Prov(ϕ).

The other two properties do not follow from computational completeness alone, but they
are still reasonable, and they hold for all the formal systems mentioned before, provided
FindProof is written in a perspicuous fashion. The next one says that F is strong enough
to formalize the Adequacy property above, and to capture the reasoning used to show it.

Formal Adequacy. For any sentence ϕ, the sentence,

“Prov(ϕ)→ Prov(Prov(ϕ))”

is provable in F .

In other words, F proves,

8¬π is the negation of π, i.e., the formula, “FindProof halts on input x.”
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“If ϕ is provable, then it is provable that ϕ is provable.”

The final assumption we make is that F can capture and prove the fact that new theorems
can be derived from old through modus ponens. Recall that modus ponens (m.p.) is the rule
of inference by which a sentence ψ is proved from some pair of already-proven statements ϕ
and ϕ→ ψ.

Formal Modus Ponens (FMP). For any sentences ϕ and ψ, the sentence,

“Prov(ϕ→ ψ)→ (Prov(ϕ)→ Prov(ψ))”

is provable in F .

In other words, F proves,

“If ϕ→ ψ is provable, then it is the case that if ϕ is provable then ψ is provable.”

Proof of Theorem 5. We assume that F is computationally complete, computationally for-
malizable, formally adequate, and formally modus ponens. Suppose ϕ is as in the hypothesis
of Theorem 5, i.e., F proves “Prov(ϕ) → ϕ.” Let τ be the formula, “If x is provable, then
ϕ is true,” and let Gτ be its fixed point. That is, F proves

“Gτ ↔ (Prov(Gτ )→ ϕ).”

So F now proves the following statements:

Statement Reason
(1) Gτ → (Prov(Gτ )→ ϕ) (“→” part of “↔”)
(2) Prov(Gτ → (Prov(Gτ )→ ϕ)) ((1), Adequacy)
(3) Prov(Gτ )→ Prov(Prov(Gτ )→ ϕ) ((2), FMP & m.p.)
(4) Prov(Prov(Gτ )→ ϕ)→ (Prov(Prov(Gτ ))→ Prov(ϕ)) (FMP)
(5) Prov(Gτ )→ (Prov(Prov(Gτ ))→ Prov(ϕ)) ((3,4), logic & m.p.)
(6) Prov(Gτ )→ Prov(Prov(Gτ )) (Formal Adequacy)
(7) Prov(Gτ )→ Prov(ϕ) ((5,6), logic & m.p.)
(8) Prov(ϕ)→ ϕ (hypothesis)
(9) Prov(Gτ )→ ϕ ((7,8), logic & m.p.)

(10) (Prov(Gτ )→ ϕ)→ Gτ (“←” part of “↔”)
(11) Gτ ((9,10), m.p.)
(12) Prov(Gτ ) ((11), Adequacy)
(13) ϕ ((9,12), m.p.)

2
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