
Bounded Immunity and Btt-Reductions

Stephen Fenner∗

Department of Computer Science

University of Southern Maine

96 Falmouth Street

Portland, Maine 04103, USA

fenner@cs.usm.maine.edu

Marcus Schaefer†

Department of Computer Science

University of Chicago

1100 East 58th Street

Chicago, Illinois 60637, USA

schaefer@cs.uchicago.edu

February 8, 2000

Abstract

We define and study a new notion called k-immunity that lies between immunity and

hyperimmunity in strength. Our interest in k-immunity is justified by the result that ∅′ does

not k-tt reduce to a k-immune set, which improves a previous result by Kobzev [7, 13]. We

apply the result to show that ∅′ does not btt-reduce to MIN, the set of minimal programs.

Other applications include the set of Kolmogorov random strings, and retraceable and

regressive sets. We also give a new characterization of effectively simple sets and show that

simple sets are not btt-cuppable.

Keywords: Computability, Recursion Theory, bounded reducibilities, minimal programs, im-

munity, k-immune, regressive, retraceable, effectively simple, cuppable.

1 Introduction

There seems to be a large gap between immunity and hyperimmunity (h-immunity) that is

waiting to be filled. What happens, one wonders if the disjoint strong arrays that try to witness

that a set is not h-immune are subjected to additional conditions, in particular a restraint on

the cardinality of the sets in the array? First, let us recall the role immunity and thinness

properties have played in computability theory1.

In 1944 Post published his seminal paper on Recursively enumerable sets of positive integers

and their decision problems (reprinted in Davis’s The Undecidable [2]). With this paper he

initiated what has since become known as Post’s program: relating the thinness of a set to

its degree. His goal was to show that there was a noncomputable c.e. set with a complement

∗Partially supported by NSF Grant CCR-9501794
†Partially supported by NSF Grants CCR 92-53582 and CCR-9501794
1In this paper we will use the terminology suggested by Soare [15]. In particular we will denote a computably

(recursively) enumerable set by c.e. and talk about computable partial functions instead of partial recursive

functions.

1

so thin that it could not be Turing complete. In 1958 Friedberg defeated Post’s program

for Turing completeness by constructing a Turing complete maximal set, i.e. a set with the

thinnest possible complement. Notwithstanding this setback, Post’s idea has been successful

for stronger reductions. Post himself proved in his 1944 paper that a simple set cannot be

btt-complete, and a hypersimple set not tt-complete. The first result was strengthened by

Kobzev in 1973, when he proved that no set which is part of a computably inseparable pair

of c.e. sets btt-reduces to a simple set. In turn our paper manages to improve on Kobzev by

weakening the simplicity assumption.

We begin with the study of the mostly uncharted territory between immunity and h-

immunity. A set A is called k-immune if there is no strong disjoint array for which every set

in the array intersects A and has cardinality at most k. It is called ω-immune (or bounded

immune) if it is k-immune for every k. We can then show that if B separates a computably

inseparable pair of c.e. sets, then B does not k-tt-reduce to a k-immune set, and hence B

does not btt-reduce to an ω-immune set. This gives a more detailed picture than the Kobzev

result. Kobzev was interested in c.e. sets only, and c.e. sets are simple if and only if they have

an ω-immune complement (this folklore result will be proved in Lemma 3.2). The concepts

of k-immunity and bounded immunity have been used implicitly several times in the past,

for example by Appel and McLaughlin [1] and Jockusch [6] in their work on retraceable and

regressive sets.

We begin the paper with a short historical account of the success of Post’s program. It

contains no information essential to the rest of the paper, and the unhistorical reader can skip

it without harm. In Section 3 we define k-immunity and establish some important basic re-

sults. The improved Kobzev result is presented in Section 4. We give several new applications,

notably to MIN, the set of minimal programs (i.e. the minimal indices of a Gödel numbering),

showing that ∅′ cannot btt-reduce to MIN. In Section 5 we study in some detail the conse-

quences for retraceable and regressive sets. We go on to have a closer look at ω-immune sets

which are not h-immune, and give a new characterization of effectively simple sets. Finally we

show that simple sets are neither btt-cuppable nor d-cuppable.

For notation and definitions of the standard concepts of computability we refer the reader

to the usual sources [13, 16]. In the following, degree always means Turing degree, unless

specified otherwise.

2 A concise history of immunity and completeness

We collect the known results that connect notions of immunity with completeness in the

following table. The first column contains the immunity assumption and the second column

the conclusion. The last column contains references which can be checked in Odifreddi [13]

and Soare [16]. The table presents the results as they are claimed in the reference, i.e. not

necessarily the optimal result. We will make some remarks on that below the table. By B

2

separates a computably inseparable pair of c.e. sets we mean that there are disjoint c.e. sets A

and C which are computably inseparable, and A ⊆ B ⊆ C.

If A is then Proved in

co-immune, ∅′ 6≤m A. Post, 1944 [2]

immune, and B is c.e. B 6≤c A. easy exercise

and noncomputable,

co-immune, B separates a computably B 6≤d A. Proposition 4.2

inseparable pair of c.e. sets,

k-immune, and B separates a computably B 6≤k-tt A. Theorem 4.4

inseparable pair of c.e. sets,

ω-immune, and B separates a computably B 6≤btt A. Theorem 4.4

inseparable pair of c.e. sets,

ω-immune, and B is c.e. B 6≤bd A. Schaefer, 1996 [15]

and noncomputable,

simple, ∅′ 6≤btt A. Post, 1944 [2]

simple, and B is part of a computably B 6≤btt A. Kobzev, 1973 [7]

inseparable pair of c.e. sets,

hypersimple, ∅′ 6≤tt A. Post, 1944 [2]

hyperimmune, and B is part of a B 6≤tt A. Denisov, 1974 [3]

computably inseparable pair of c.e. sets,

hypersimple, ∅′ 6≤wtt A. Friedberg, Rogers, 1959

hyperhypersimple, ∅′ 6≤Q A. Soloviev, 1974, and

Gill, Morris, 1974

noncomputable, semirecursive, ∅′ 6≤T A. Degtev, 1973, and

η-hyperhypersimple Marchenkov, 1976

The table prompts several natural questions some of which we will try to answer in the

following notes.

Remarks.

(i) The Kobzev and the Denisov result as stated in the table both require B to be part of

a computably inseparable set of c.e. sets. As a matter of fact both proofs (as presented

by Odifreddi) will work with the weaker assumption that B separates a computably

inseparable pair of c.e. sets. This includes non-c.e. sets as well.

(ii) A closer look at Odifreddi’s proof of Denisov’s result shows that for bounded truth-table

reduction it establishes that if B separates a computably inseparable pair of c.e. sets and

B ≤k-tt A, then A is not 2k-immune which is good enough to imply Kobzev’s result, but

not our Theorem 4.4.

(iii) Comparing the Denisov result with the Friedberg and Rogers result of the next line,

3

one might wonder whether ≤tt (in Denisov) can be improved to ≤wtt while keeping the

weaker assumptions of the Denisov result. This, however, is not possible, since every

noncomputable c.e. wtt-degree contains a computably inseparable pair of c.e. sets [13,

Proposition III.6.22]. On the other hand the Friedberg and Rogers result remains true

with hyperimmunity instead of hypersimplicity; the usual proof shows that.

(iv) The Friedberg and Rogers result was improved by Downey and Jockusch [4]. By their

result no hypersimple set is wtt-cuppable, namely if H is hypersimple there is no c.e. set

B such that H ⊕ B is wtt-complete, unless B itself is already wtt-complete. A similar

result has been proved by Nies and Sorbi for e-reductions [12]. We will show later that

the btt-incompleteness of simple sets can be strengthened as well: simple sets are neither

btt-cuppable, nor d-cuppable.

(iv) In 1976 Marchenkov (building on Degtev) finally came up with a property that forced Tur-

ing incompleteness. The property includes semirecursiveness which is not, strictly speak-

ing, a thinness properties. Since then several other such properties—including E-definable

ones—implying Turing incompleteness have been found (Harrington and Soare [5]).

3 The notion of k-immunity

Let (Dx)x∈ω be a canonical numbering of the finite sets. A family (Df(x))x∈ω of finite sets is

a disjoint strong array if f is a computable function, and all the Df(x) are pairwise disjoint

and nonempty. It is a disjoint strong k-array if it is a disjoint strong array, and in addition

|Df(x)| = k for all x ∈ ω. If we want to emphasize f , we say that f describes a disjoint strong

array (or k-array). For brevity we will also sometimes say that the array intersects a set A,

which just means that every set in the array intersects A.

We can now define a notion of immunity between immune and h-immune.

Definition 3.1 A set M is k-immune if there is no disjoint strong k-array, all of whose

elements intersect M . That is, there is no computable f such that

• (∀x) |Df(x)| = k,

• (∀x 6= y) Df(x) ∩ Df(y) = ∅, and

• (∀x) Df(x) ∩ M 6= ∅.

A set M is ω-immune (or bounded immune) if it is k-immune for all k.

Note that (k + 1)-immunity implies k-immunity for all k ≥ 1, and 1-immunity is the same

as immunity. This finer hierarchy of immunity has not attracted a lot of attention. One partial

reason is without doubt the following folklore result.

Lemma 3.2 If A is simple, then A is ω-immune.

4

Proof. Suppose A is an immune set which is not k-immune for some k > 1, and A is

c.e. We will prove that A is not (k − 1)-immune, which proves the lemma. Let (Df(x))x∈ω

be as in the definition of k-immune. Since A is immune there must be infinitely many x for

which Df(x) intersects A. Using that A is c.e., we can enumerate these infinitely many Df(x)

dropping the element which was found to be in A. So we can enumerate infinitely many finite

sets that are pairwise disjoint, intersect A, and contain at most k − 1 elements. In short, A is

not (k − 1)-immune. 2

The notions of k-immunity can be separated in ∆0
2 though. A much stronger result will be

proved in the following section, and some natural examples are presented in Section 3.2.

3.1 Separating the new notions of immunity

In this section we will prove two theorems which show that k-immune sets that are not (k+1)-

immune, and ω-immune sets that are not h-immune are—in a sense—abundant.

Theorem 3.3 Every noncomputable c.e. degree contains a k-immune set which is not (k+1)-

immune (for arbitrary k).

This theorem is a consequence of a lemma which is stronger, but does not have the dashing

good looks of the theorem.

Lemma 3.4 For every noncomputable c.e. set B, and every k there is a k-immune set A ≤wtt

B, such that B bounded-disjunctively reduces to A with norm k+1, and A is not (k+1)-immune.

Proof. Fix k. We will construct the set A by a finite injury argument. Define a family of

intervals Ie := {z : e(k + 1) ≤ z < (e + 1)(k + 1)}. The set A will contain at most one point in

every Ie, and A will meet the requirement

Pe : e ∈ B iff A ∩ Ie 6= ∅,

for all e. This will ensure that B bounded-disjunctively reduces to A with norm k + 1. Fur-

thermore if C is an infinite computable subset of B, then the family (Ie)e∈C is a disjoint strong

(k + 1)-array which witnesses that A is not (k + 1)-immune. (See also the remark after the

proof.)

The set A will furthermore have to meet the requirements

Ne : if (Dϕe(n))n∈ω is a disjoint strong k-array,

then there is an n such that Dϕe(n) does not intersect A,

which make A k-immune.

The construction is a finite injury argument with regard to the N type of requirements.

Requirement Ne has higher priority than Ne′ if e < e′. Requirements of type P will be fulfilled

instantaneously.

During the construction the intervals will be assigned to requirements of type N . At each

stage, every interval is assigned to at most one requirement. A requirement Ne has associated

5

with it a taboo set Te of elements it tries to keep out of A. A taboo set contains at most k

elements.

Let f be a computable function enumerating B without repetitions.

Stage s = 0. Let A0 = ∅. Initially all intervals are unassigned, and all the taboo sets Te are

empty.

Stage 2s + 1. (Satisfy Pf(s).) Let e = f(s). We will satisfy Pe. The set A2s ∩ Ie is currently

empty, since f enumerates B without repetition, and only Pe can put an element into Ie. If Ie

is currently assigned to a requirement Ne′ , then let a be the smallest element in Ie − Te′ (note

that this is possible, since Ie contains k + 1 elements, whereas Te′ contains only k). Should

Ie not be assigned to a requirement let a be the smallest element of Ie. Put a into A2s+1.

Requirement Pe is satisfied, and will remain so henceforth.

Stage 2s + 2. (Make A k-immune, and A ≤wtt B.) Say Ne requires attention at stage 2s + 2 if

there are no intervals assigned to Ne, and there exist t and x such that

(i) 〈e, t, x〉 < s + 1, and

(ii) |Dϕe,t(x)| = k, and

(iii) Dϕe,t(x) does not intersect any interval Ie′ with e′ < e, nor does it intersect any interval

assigned to a requirement Ne′ of higher priority, and

(iv) f(s + 1) < min(Dϕe,t(x)).

Choose the smallest e such that Ne requires attention at stage 2s + 2. Say requirement Ne

receives attention at stage 2s + 2. Let Te = Dϕe,t(x). Remove all assignments of intervals to

requirements of lower priority than Ne, and assign all intervals that intersect Te to Ne. For

all intervals In that are assigned to Ne, and for which In ∩ A2s+1 6= ∅, let In ∩ A2s+2 contain

only the smallest element of In that is not in Te (again this is possible because of cardinality

reasons). For all other intervals In let A2s+2 ∩ In = A2s+1 ∩ In. Let all Te′ = ∅ for e′ > e. End

of Construction.

If we assume that As converges to a set A, then we see that by construction all Pe are

satisfied: if e 6∈ B, then there will never be an element in A ∩ Ie; if e ∈ B, then an element

is put into the corresponding interval (which is possible, because at any one time there is at

most one taboo set associated with the interval, so there is an element of the interval not in

the taboo set). During stages 2s + 2 this element might be moved within the interval, but this

does not affect Pe (assuming that A exists).

Every requirement of type N can only be injured by requirements of type N of higher

priority, and hence acts only finitely often. Since every interval can only be changed by finitely

many requirements this implies that every interval will have a final assignment, or remain

without an assignment. In either case lims→∞ As ∩ In exists for every n, and hence the As

converge to a set A for s → ∞.

6

Suppose that not all requirements of type N are satisfied. Choose Ne to be the requirement

of highest priority that is not satisfied. Then by the argument of the preceding paragraph there

is a stage s′ after which no requirement Ne′ of higher priority will act, so Ne will not be injured

after stage s′. There are no intervals assigned to Ne at stage s′ and (Dϕe(x))x∈ω is a disjoint

strong k-array (otherwise Ne would be satisfied, and remain satisfied).

Given y we can effectively find x and t such that conditions (ii) and (iii) of the construction

are satisfied, and moreover min(Dϕe(x)) > y. Then at stage s = max{s′, 〈e, x, t〉} all conditions

except (iv) are satisfied. Since Ne cannot receive attention (otherwise it would be satisfied

permanently), we can conclude that y < min(Dϕe(x)) ≤ f(s′′+1) for all s′′ > s. Hence y ∈ B iff

y ∈ {f(0), . . . , f(s)} which is impossible, since B is not computable. Therefore Ne is satisfied.

We are left with the proof that A ≤wtt B. But this follows from the permitting in condition

(iv) together with (iii): given y determine the first interval In to the right of y (i.e. y 6∈ In and

y ∈ In−1), and use B to determine a stage s such that {f(0), . . . , f(s)} = B ∩
⋂

i<n Ii. Since f

enumerates B without repetitions, from this stage on conditions (iii) and (iv) ensure that A

does not change on
⋂

i<n Ii, so we can decide A by simulating the construction up to stage s.

This gives us a wtt-reduction from A to B. 2

Remark. The above proof showed explicitly that the constructed set A was not (k + 1)-

immune. This could have been avoided by using an observation made by Schaefer [14]: if a

c.e. noncomputable set bounded disjunctively reduces to a set B with norm (k + 1), then the

set B is not (k + 1)-immune.

Using a very similar proof, bounded immunity can be separated from h-immunity. We just

state the result without proof. The theorem and the lemma are immediate consequences of

Lemma 6.4.

Theorem 3.5 Every noncomputable c.e. degree contains an ω-immune set which is not h-

immune.

Again there is a stronger lemma from which the theorem follows.

Lemma 3.6 For every noncomputable c.e. set B, there is an ω-immune set A ≤wtt B, such

that B disjunctively reduces to A, and A is not h-immune.

3.2 Kolmogorov random strings and minimal indices

After showing that our newly defined variant of immunity is non-trivial, it is time we presented

some natural examples. The set R of Kolmogorov random strings is defined by R = {x : (∀y ≤

x)[ϕy(0) 6= x]}.

Theorem 3.7 R is ω-immune but not h-immune.

We omit the straightforward proof. One might object that R is co-c.e. and bounded im-

munity collapses to immunity, so in Section 5 on retraceable and regressive sets we present an

easy example of a set in ∆0
2 which is not co-c.e., ω-immune and not h-immune.

7

Another natural example, which can be found higher up in the hierarchy, is MIN, the set

of minimal indices of a Gödel numbering, i.e. MIN = {e : (∀i < e) [ϕi 6= ϕe]}. It is well

known [11, 14] that MIN is Turing-equivalent to ∅′′, and that it is not h-immune.

Theorem 3.8 (Schaefer [14]) MIN is ω-immune.

Proof. The proof generalizes the usual immunity proof for MIN using the k-fold Recursion

Theorem. Suppose MIN was not k-immune. Let Df(i) witness this as in the definition of

k-immunity. Define a computable function h(x1, . . . , xk) := f((µi)[(∀z ∈ Df(i))(∀j)[z > xj]]).

The function h picks out the index of the first set in the enumeration for which all elements

are bigger than any xj. We use h to define k computable functions. For 1 ≤ i ≤ k let

gi(x1, . . . , xk) := the ith element of Dh(x1,...,xk) .

By the k-fold Recursion Theorem there are k indices e1, . . . , ek such that ϕgi(e1,...,ek) = ϕei
for

all 1 ≤ i ≤ k. Since gi(e1, . . . , ek) > ei this contradicts the fact that gi(e1, . . . , ek) has to be a

minimal index for some i. 2

A careful look at the proof shows that MIN is in fact effectively k-immune: there is a total

computable function g such that if We is a set of canonical indices of pairwise disjoint sets, all

of which intersect MIN and contain at most k elements, then g(e) is an upper bound on the

cardinality of We (in fact it even bounds maxx∈We{min(Dx)}).

4 Bounded truth-table reducibility

Two sets A and B are computably inseparable if there is no computable set C for which

A ⊆ C ⊆ B.

Definition 4.1 We call a set E a separator if it separates a computably inseparable pair of

c.e. sets, i.e. there are c.e. sets A and B which are computably inseparable, and A ⊆ E ⊆ B.

It is obvious that a separator cannot be computable. As a consequence of the Low Basis

Theorem by Jockusch and Soare [16] we know that there are low separators. Before we turn to

bounded truth-table reducibilities we will first show an easy result on disjunctive reducibility

that illustrates the power of computably inseparable sets.

Proposition 4.2 If M is co-immune, and E is a separator, then E 6≤d M .

Proof. Let A and B be the pair of noncomputable c.e. sets separated by M , i.e. A ⊆ M ⊆

B, and f computable such that x ∈ E iff Df(x) ∩ M 6= ∅. Then Df(x) ⊂ M for all x ∈ B, and

since M is immune,
⋃

x∈B Df(x) is finite. But this contradicts the inseparability of A and B.

2

Since ∅′ is half of a computably inseparable pair, the following corollary is immediate.

Corollary 4.3 If M is simple, then ∅′ 6≤d M .

Contrast this with the fact that Post’s construction of a simple set can be modified so as to

yield a conjunctively complete simple set.

8

We now turn to our real concern in this section, the bounded reducibilities.

Theorem 4.4 If E is a separator, and M is a k-immune set, then E 6≤k-tt M .

This result was proved without knowledge of an earlier, weaker result by Kobzev [13,

Exercise III.8.10], which uses similar techniques.

As above we get the following corollary.

Corollary 4.5 For all k ≥ 1 and any set M , if M is k-immune, then ∅′ 6≤k-tt M .

Using the Low Basis Theorem we can get another corollary to the theorem: there is a low

set which does not k-tt reduce to any k-immune set. We will state all the corollaries for ∅′,

but the results also hold for some low set. Note that the corollary is optimal with regard to k,

since by Lemma 3.4 there is a k-immune set which is (k + 1)-disjunctively equivalent to ∅′.

In particular, for the sets R and MIN as defined in the last section we have the following

corollaries.

Corollary 4.6 (Kummer [9]) ∅′ 6≤btt R.

Concerning weaker reductions Kummer proved the surprising fact that R is truth-table

complete.

Corollary 4.7 ∅′ 6≤btt MIN.

This result is optimal in the sense that there is a Gödel numbering relative to which MIN

is truth-table complete for the second level of the arithmetical hierarchy [14]. It is an open

question, however, whether MIN is truth-table complete for arbitrary Gödel numberings.

The proof of Theorem 4.4 breaks down into two parts. The general case of k-tt reductions

is reduced to a fixed truth table by Lemma 4.9, and the fixed truth table case is resolved in

Lemma 4.10. For the sake of clarity we include the definition of a reduction via a fixed truth

table.

Definition 4.8 Let E and M be arbitrary sets, let α: 2k → 2 be a k-ary Boolean function, and

let f be computable. We say that E α-reduces to M via f (f :E ≤α M) if

• (∀x) |Df(x)| = k,

• (∀x ∈ E) α(χM (Df(x))) = 1, and

• (∀x 6∈ E) α(χM (Df(x))) = 0,

where χM (Dy) is the vector (M(y1), . . . M(yk)), where Dy = {y1 < · · · < yk}. (We say that

E ≤α M if there exists such an f .)

Lemma 4.9 Suppose E is a separator and M an arbitrary set. If E ≤k-tt M , then there is a

separator Ẽ and a k-ary Boolean function α such that Ẽ ≤α M .

Proof. Let A and B be two computably inseparable c.e. sets with A ⊆ E ⊆ B. Since

E ≤k-tt M , there is a computable f , and a k-ary Boolean function αx effectively computable

from x such that |Df(x)| = k for all x ∈ ω, and

9

• (∀x ∈ A) αx(χM (Df(x))) = 1, and

• (∀x ∈ B) αx(χM (Df(x))) = 0.

Let ℓ = 22k

and let τ1, . . . , τℓ enumerate all k-ary Boolean functions. For 1 ≤ i ≤ ℓ, set

Ti = {x : αx = τi}. If A∩ Ti and B ∩ Ti are computably separable for all i, then clearly A and

B are computably separable, so fix i such that Ã = A ∩ Ti and B̃ = B ∩ Ti are computably

inseparable, and set α = τi, and Ẽ = {x : α(χM (Df(x)) = 1}. 2

Lemma 4.10 If E is a separator and M is k-immune, then there is no k-ary α such that

E ≤α M .

Proof. Let A and B be a computably inseparable pair of c.e. sets with A ⊆ E ⊆ B.

Suppose M is k-immune and there is a k-ary α such that E ≤α M via some computable f .

We can assume without loss of generality that α(~0) = 0, since otherwise we consider ¬α and

E.

We proceed by reductio ad absurdum on k. If k = 1, then we must have α(1) = 1 by the

inseparability of A and B. Thus for all x ∈ A we have Df(x) ⊆ M , and for all x ∈ B we have

Df(x) ⊆ M . Since each Df(x) is a singleton and M is (1-)immune,
⋃

x∈A Df(x) is finite, which

contradicts the inseparability of A and B.

Now suppose k > 1, A and B are computably inseparable c.e. sets, M is k-immune, and

f :E ≤α M . To complete the proof, we show that there is a separator Ẽ such that Ẽ ≤β M

for some (k − 1)-ary β.

Again, assume without loss of generality that α(0k) = 0, so in particular Df(x) ∩ M 6= ∅

for all x ∈ A. There exists a finite set S ⊆ ω such that min(Df(x)) ∈ S for all x ∈ A, since

otherwise we could build a disjoint strong k-array of sets intersecting M , contradicting the

k-immunity of M . Let S0 = S ∩ M and let S1 = S ∩ M . For i ∈ 2, define

Ai = {x ∈ A : min(Df(x)) ∈ Si},

and

Bi = {x ∈ B : min(Df(x)) ∈ Si}.

Note that all the Ai and Bi are c.e., Ai ∩ Bi = ∅, and the Ai partition A.

Claim 4.11 There is an i ∈ 2 such that Ai and Bi are computably inseparable.

Proof of Claim. Suppose not. For i ∈ 2, let Ci be computable with Ai ⊆ Ci ⊆ Bi. Let

C =
⋃

i∈2

(Ci ∩ {x : min(Df(x)) ∈ Si}).

Clearly, C is computable and by definition A ⊆ C ⊆ B, contradicting the inseparability of A

and B. 2 Claim

Now fixing i ∈ 2 such that Ai and Bi are computably inseparable, we set F = Ai, G = Bi,

and β = λ~v ∈ 2k−1.α(i, ~v). Define g such that Dg(x) = Df(x) − {min(Df(x))}, and finally

10

let Ẽ := {x : β(χM (Dg(x))) = 1}. Then F ⊆ Ẽ ⊆ G, and Ẽ is a separator by the claim;

furthermore Ẽ ≤β M via g. 2

Remark. It was observed by Fischer [13] that any btt-reduction can be transformed into one

where the truth table is fixed, i.e., independent of the input. So if one is only interested in

btt-reducibility, then we can avoid using Lemma 4.9 and prove that if M is k-immune for all

k, then ∅′ 6≤btt M—a result somewhat weaker than Corollary 4.5, but still strong enough to

prove Corollary 4.7. Lemma 4.10 (with Lemma 4.9 or Fischer’s observation) also allows an

easy proof of Post’s result that no simple set can be btt-complete.

5 Retraceable and Regressive Sets

Definition 5.1 A (partial) function g regresses the set A if there is a (not necessarily effective)

enumeration (an)n∈ω of A without repetitions such that g(an+1) = an and g(a0) = a0. If the

enumeration can be taken to be in increasing order, then g is said to retrace A. A set is called

regressive (retraceable) if it is regressed (retraced) by a computable partial function.

By the classic result of Dekker and Myhill a retraceable set is either computable or immune,

and a regressive set is either c.e. or immune. Regarding regressive sets the following strength-

ening was shown by Appel and McLaughlin (stated in a different terminology naturally).

Theorem 5.2 (Appel and McLaughlin [1]) A regressive set is either c.e. or ω-immune.

Another theorem is immediate from this (although Appel and McLaughlin do not mention

this).

Theorem 5.3 A retraceable set is either computable or ω-immune.

Proof. A retraceable set is regressive, so it is either c.e. or ω-immune. If it is c.e. it is not

immune, and hence computable by the result of Dekker and Myhill. 2

Corollary 5.4 If A is retraceable, then ∅′ 6≤btt A.

The theorem allows us to fulfill the promise of an easy example of a set in ∆0
2 that is ω-

immune without being co-c.e.: let A be the set of initial segments of the characteristic function

of ∅′, i.e. A = {σ ∈ {0, 1}∗ : (∀i < lh(σ))[σ(i) = ∅′(i)]}, where lh(σ) is the length of the string

σ. Then A is obviously retraced by a total computable function (which deletes the last bit).

It is d.c.e., but neither c.e., nor co-c.e., and hence by the preceding theorem ω-immune. It is

not h-immune, since it contains a string of every length.

This example also shows that every set has a truth-table equivalent retraceable set, which

is optimal by the corollary.

Using a theorem of Kobzev and Lachlan [13] that every btt-complete set is bd-complete we

can conclude with the help of Theorem 5.2:

Theorem 5.5 If A is regressive and ∅′ ≤btt A, then A is c.e., and hence bd-complete.

This result is optimal, since ∅′ itself is c.e. and hence regressive. Bounded disjunctive

completeness is also the best we can expect, as illustrated by the following example: ∅′ can be

11

split into two disjoint low c.e. sets A and B (according to the Sacks Splitting Theorem). Then

∅′ disjunctively reduces to A × B with two queries. Furthermore A × B is a c.e. and hence

regressive set, but it cannot be m-complete (not even 1-tt-complete), since otherwise one of A

or B would have to be m-complete (by a result of Lachlan [16, Exercise II.4.16]).

Another notion which simultaneously generalizes enumerability and regressiveness was in-

troduced by Jockusch [6]. A set A is called uniformly introenumerable if there is one e such

that χA = ϕB
e for all infinite subsets B of A. Jockusch proved that every immune uniformly

introenumerable set is ω-immune.

Theorem 5.6 If A is immune and uniformly introenumerable, then ∅′ 6≤btt A.

The classical results on regressive and retraceable sets roughly speaking show that these

sets cannot have easy infinite subsets without being easy themselves. We end this section by

a result which argues that the opposite view is also true. Remember that a set A is effectively

immune if there is a (total) computable function f such that We ⊂ A =⇒ |We| < f(e) for all

e.

Theorem 5.7 Suppose A has an infinite subset computable in B. If A is regressive and

effectively immune, then A ≤T B.

Proof. Let C be the infinite subset of A with C ≤T B. Suppose A is regressed by

the computable partial function g, and strongly effectively immune via f . Let Wh(e) =

{e, g(e), g2(e), . . .}. Define l(e) = f(h(e)). To decide whether e ∈ A search for an element

x ∈ C such that gl(e)(x) 6= gl(e)+1(x) (such x’s are abundant). Then e ∈ A if and only if there

is a k such that gk(x) = e. Namely if gk(x) = e for some k, then e ∈ A since x ∈ A and g

regresses A. For the other direction note that if e ∈ A every regression sequence containing at

least l(e) elements which is started on an element of A must run through e. 2

A set A is called introreducible if it is computable in all its infinite subsets, and uniformly

introreducible if there is one oracle algorithm that computes A with any infinite subset of A as

an oracle. Note that the above proof was uniform in C.

Corollary 5.8 If a set is regressive and effectively immune, then it is uniformly introreducible.

In Theorem 5.7 the condition that A be strongly effectively immune could have been

dropped, to still get the conclusion that A ≤T B ⊕ ∅′, since in the proof we can use the

∅′ oracle to compute an upper bound on |Wh(e)|.

Corollary 5.9 Suppose A has an infinite subset computable in B. If A is regressive, then

A ≤T B ⊕ ∅′.

This can be put more succinctly by letting A be Σk complete and B = ∅(k−1) for k ≥ 2.

Corollary 5.10 No Σk-complete set is regressive for k ≥ 2.

We can apply the corollary to MIN, since it is Σ2-complete.

Corollary 5.11 MIN is not regressive.

12

6 Fat and thin sets

We already mentioned earlier (without proving it) that there are ω-immune sets which are

not h-immune. There is still a very large gap between hyperimmunity and bounded immunity

which we will investigate in this section. To do so we first introduce a new notation. Let

(Df(x))x∈ω be a disjoint strong array. With this define (#f)(n) = |{x : |Df(x)| = n}|, i.e. #f

counts how many sets of cardinality n appear in the array. Since we will restrict our attention

to disjoint strong arrays intersecting ω-immune sets, #f only takes finite values. Remember

that g dominates f if g(n) > f(n) for almost all n. If the inequality holds only infinitely often,

then g is said to majorize f .

Definition 6.1 An ω-immune set A is called thin if there is a computable function which

dominates every #f , where (Df(x))x∈ω is a disjoint strong array intersecting A that is A ∩

Df(x) 6= ∅ for all x.

The intuition is that although A is not h-immune, it is so thin that we can effectively bound

(eventually) the number of sets of a given cardinality in any disjoint strong array intersecting

A. The other extreme is a set which allows for disjoint strong arrays beating any computable

bound.

Definition 6.2 An ω-immune set A is called fat if there is a disjoint strong array (Df(x))x∈ω

intersecting A such that #f dominates every computable function.

Playing with quantifiers gives several intermediate degrees of fatness and thinness. We will

only show that the two notions defined above are proper. Obviously no set can be fat and thin

at the same time.

6.1 The fat sets

In this section we will prove the existence of fat sets in every noncomputable c.e. degree. So

far we have not been able to find natural examples of fat sets.

Theorem 6.3 Every noncomputable c.e. degree contains a fat set.

As always the theorem follows from a lemma.

Lemma 6.4 For every noncomputable c.e. set B, there is a fat set A ≤wtt B, such that B

disjunctively reduces to A.

Note that this implies Theorem 3.5 and Lemma 3.6 since fat sets are ω-immune but not

h-immune.

Proof. By a finite injury argument we will construct a set A, and a computable function

f such that (Df(x))x∈ω is a strong disjoint array intersecting A. There are three types of

requirements. The P requirements code B into A on the even elements, while the R and N

requirements guarantee that A is fat if restricted to the odd elements (hence A is fat). The

negative N requirements make A ω-immune.

13

Let Fe = {2e+1, 2e+1 + 2, . . . , 2e+2 − 2}. Note that |Fe| = 2e and Fe contains only even

numbers. We fulfill

Pe : e ∈ B iff A ∩ Fe 6= ∅,

for all e. This will ensure that B disjunctively reduces to A.

To assure that A intersects enough sets in the strong disjoint array we satisfy

Re,k : if ϕe(k) ↓ and k ≥ e, then

(#f)(k) ≥ ϕe(k),

for all e, k.

Finally we have to make sure that A is ω-immune by meeting

Ne : if (Dϕe(n))n∈ω is a disjoint strong e-array,

then there is an n such that Dϕe(n) does not intersect A,

for all e.

The construction is a finite injury argument with regard to the N type of requirements.

The priority ordering is

R0,0 < P0 < N0

< R0,1 < R1,1 < P1 < N1

...

< R0,k < · · · < Rk,k < Pk < Nk

Requirements of type P and R will be fulfilled instantaneously and never be injured after-

wards.

During the construction collections of finite sets of integers will be assigned to requirements

of all three types. More exactly Fe (containing even integers) will be assigned to Pe when e

enters B (and this will be the only set assigned to Pe). Both R and N type requirements

will be assigned more than one set in general. Sets assigned to Re,k will contain k elements.

Sets assigned to Ne will contain more than e elements. Furthermore a requirement Ne has

associated with it a taboo set Te of at most e elements it tries to keep out of A.

Let g be a computable function enumerating B without repetitions.

Stage s = 0. Let A0 = ∅, f undefined everywhere, u0 = 1. Initially nothing is assigned to any

Re, and all the taboo sets Te are empty.

Stage 3s + 1. (Satisfy Pg(s).) Let e = g(s). We will satisfy Pe. The set A3s ∩ Fe is currently

empty, since g enumerates B without repetition, and only Pe can put an element of Fe into

A. Consider the set T =
⋃e−1

i=0 Ti. Then T contains at most (e − 1)e/2 < 2e = |Fe| elements,

so we can choose the smallest a ∈ Fe − T and enumerate a into A, i.e. A3s+1 ∩ Fe = {a}, and

A3s+1 − Fe = A3s. Assign Fe to Pe. Let u3s+1 = u3s. Requirement Pe is satisfied, and will

14

remain so henceforth. Reset all taboo sets of N requirements of lower priority, i.e. Ti = ∅ for

all i ≥ e.

Stage 3s + 2. (Satisfy R type requirements.) Say that Re,k requires attention at stage 3s + 2

if ϕe,s(k) ↓ and k ≥ e and Re,k has not received attention before. Let Re,k be the highest

priority requirement requiring attention. We say that Re,k receives attention. Let ϕe,s(k) = y,

and Hi = {u3s+1 + i ∗ 2k, u3s+1 + 2 + i ∗ 2k, . . . , u3s+1 + (i + 1) ∗ 2k − 2} for 0 ≤ i < y that

is the Hi partition the first y ∗ k odd integers beyond u3s+1 into y blocks of length k each.

Assign (Hi)0≤i<y to requirement Re,k. Enumerate the smallest element of each Hi into A3s+2,

i.e. A3s+2 ∩ Hi = {u3s+1 + i ∗ 2k}, and leave the rest of A unchanged. Extend f to include

canonical indices of all the Hi (0 ≤ i < y) in its range. Let u3s+2 = u3s+1+y∗2k. Requirement

Re,k is satisfied, and will remain so henceforth. Reset all taboo sets of N type requirements of

lower priority, i.e. Ti = ∅ for all i ≥ k.

Stage 3s + 3. (Satisfy N type requirements, and ensure A ≤wtt B.) Say Ne requires attention

at stage 3s+3 if there is no collection of sets assigned to Ne, and there exist t and x such that

(i) 〈e, t, x〉 < s + 1, and

(ii) |Dϕe,t(x)| ≤ e, and

(iii) Dϕe,t(x) lies completely to the right of any set assigned to any requirement (P , R or N) of

higher priority, i.e. if z ∈ Dϕe,t(x) and w ∈ H where H is a set assigned to a requirement

of higher priority, then z > w, and

(iv) g(s + 1) < min(Dϕe,t(x)).

Choose the smallest e such that Ne requires attention at stage 3s + 3. Say requirement Ne

receives attention at stage 3s + 3. Fix t and x. Let Te = Dϕe,t(x). Remove all assignments

of collections of sets to N type requirements of lower priority than Ne, and assign all sets

assigned to R or P type requirements that intersect Te to Ne. Note that condition (iii) implies

that these sets belong to R or P type requirements of lower priority than Ne, so they contain

more than e elements. For every set H that is assigned to Ne, and for which H ∩ A3s+3 6= ∅,

let H ∩ A3s+3 contain only the smallest element of H that is not in Te (this is possible, since

|H| > e and |Te| ≤ e). Otherwise A3s+3 remains unchanged. Let all Te′ = ∅ for e′ > e, and

u3s+3 = 1 + 2max{u3s+2,max(Te)}. End of Construction.

If we assume that As converges to a set A, then we see that by construction all Pe are

satisfied: if e 6∈ B, then there will never be an element in A ∩ Fe; if e ∈ B, then an element

from Fe is put into A without injuring any higher priority N type requirements as argued

during the construction. During stages 3s+3 this element might be moved within Fe, but this

does not affect Pe (assuming that A exists).

Likewise we argue that every Re,k will be satisfied if As converges to a set A. (Note that

since us takes on only odd values the P and R type requirements do not interfere with each

other.)

15

Let H be a set assigned to a P or R type requirement. We have to argue that H ∩ As

converges. Since g enumerates B without repetition lim infs→∞ g(s) = ∞, so there is a stage

after which no taboo set can intersect H (by condition (iv)). So H ∩As will remain unchanged

from this stage onwards. Since only elements from sets assigned to R or P type requirements

are ever enumerated into A this proves that lims→∞ As = A exists.

So all P and R requirements will be fulfilled. Furthermore note that every P and R

requirement acts at most once.

Suppose that not all requirements of type N are satisfied. Choose the Ne of highest priority

which is not satisfied. Requirements of type N can be injured by all other types of requirements.

Since P and R requirements act at most once it can be proved by induction that every N type

requirement is injured at most finitely often, hence there is a stage s′ after which no P or

R type requirement of higher priority than Ne will act, and no Ni with i < e will require

attention. In particular the sets assigned to requirements of higher priority than Ne will not

change after stage s′.

There are no sets assigned to Ne at stage s′ and (Dϕe(x))x∈ω is a disjoint strong e-array

(otherwise Ne would be satisfied, and remain satisfied).

Given y we can effectively find x and t such that conditions (ii) and (iii) of the construction

are satisfied, and moreover min(Dϕe(x)) > y. Thus at stage s = max{s′, 〈e, x, t〉} all conditions

except (iv) are satisfied. Since Ne cannot receive attention (otherwise it would be satisfied

permanently), we can conclude that y < min(Dϕe(x)) ≤ g(s′′+1) for all s′′ > s. Hence y ∈ B iff

y ∈ {g(0), . . . , g(s)} which is impossible, since B is not computable. Therefore Ne is satisfied.

We are left with the proof that A ≤wtt B. But this follows from the permitting in condition

(iv) together with (iii): given y simulate the construction of A until in some stage 3s + 2 a

set H which lies completely to the right of y is assigned to a requirement Re,k, i.e. if h

is the smallest element of H, then y < h. Use B to determine a stage t > 3s + 2 such

that {g(0), . . . , g(t)} = B|\h. Since g enumerates B without repetitions, from this stage on

conditions (iii) and (iv) ensure that A does not change below h, so we can decide whether y ∈ A

by continuing to simulate the construction of A up to stage t. This gives us a wtt-reduction

from A to B. 2

6.2 The thin sets

At the other end of the spectrum we have thin sets. Thin sets occur more naturally than fat sets,

and instead of another tedious degree construction we give two very different examples of thin

sets. Both examples will fulfill a stronger property than thinness: rather than one computable

function that dominates every counting function eventually, there will be an algorithm that

finds an (everywhere) dominating function uniformly for every strong disjoint array. To make

this precise:

Definition 6.5 A set A is uniformly thin if there is a total computable function f such that

(#ϕe)(n) ≤ f(e, n) for every strong disjoint array (Dϕe(x))x∈ω intersecting A.

16

Lemma 6.6 Every uniformly thin set is thin.

Proof. Suppose A is uniformly thin via f . Let d(n) = max{f(e, n) : e ≤ n}. If ϕe describes

a disjoint strong array, then (#ϕe)(n) ≤ d(n) for every n ≥ e. 2

Sets which are c.e. and have a uniformly thin complement turn out to be good old friends.

Definition 6.7 A set A is effectively simple if it is c.e. and there is a computable function f

such that

We ⊂ A =⇒ |We| < f(e).

Theorem 6.8 The complement of an effectively simple set is (uniformly) thin.

Before proving the theorem we note several consequences. First of all the theorem gives us

a host of natural examples of (uniformly) thin sets like the complement of Post’s simple set,

and R. Secondly it yields an alternative characterization of effectively simple sets.

Corollary 6.9 A c.e. set is effectively simple if and only if its complement is uniformly thin.

One direction is covered by the theorem, the other is trivial. The corollary might be helpful

in separating the notions of uniformly thin and thin. All that would be necessary is to construct

a simple set which is not effectively simple, and whose complement is thin.

The theorem is a strong effective version of the folklore result we presented in the beginning

(Lemma 3.2). The proof presented there can be recast to show that it really depends on the

non-uniform knowledge of two parameters m = lim supx→∞ |Dg(x) ∩ A| and the point n such

that |Dg(x) ∩ A| ≤ m for x ≥ n. These are serious obstacles for an effectivization, and it takes

some work to overcome them.

Proof of Theorem 6.8. Let A be effectively simple, hence A is c.e. and there is a com-

putable function f such that We ⊂ A =⇒ |We| < f(e). We write As for an effective approxi-

mation to A.

Call g a partial disjoint strong n-array for A if

(i) Dg(x) ∩ Dg(y) = ∅ for all x, y ∈ dom(g), and

(ii) |Dg(x)| = n for all x ∈ dom(g),

(iii) Dg(x) ∩ A 6= ∅ for all x ∈ dom(g).

We claim that there is a computable (total) function h such that |dom(g)| < h(e, n) for

every g = ϕe which is a partial disjoint strong n-array for A. With this claim we can finish

the proof of the theorem. Define a computable function k(e, n) by

ϕk(e,n)(x) =

{
g(x) if |Dϕe(x)| = n,

↑ else,

and let f(e, n) = h(k(e, n), n). Suppose g = ϕe describes a strong disjoint array intersecting

A. Then (#g)(n) = |dom(k(e, n)| < h(k(e, n), n) = f(e, n), so f witnesses that A is uniformly

thin, hence it is thin.

17

For the proof of the claim assume that g = ϕe is a partial disjoint strong n-array for

A. (In the following note that even if ϕe is not, the algorithm for h(e, n) will compute some

(meaningless) value.)

To compute h(e, n) we will use an intermediate function h′(e, n,m) defined by induction

on m. The idea is that h′(e, n,m) computes a correct upper bound on |dom(g)| if we know

that max{|Dg(x) ∩ A| : x ∈ dom(g)} ≤ m.

It is easy to compute h′(e, n, 0) because we can assume that Dg(x) ⊂ A for all x ∈ dom(g).

So using f we can effectively determine an upper bound on |dom(g)|. Let us show how to

compute h′(e, n,m) inductively from h′(·, n,m − 1).

We know that max{|Dg(x) ∩ A| : x ∈ dom(g)} ≤ m. Consider the sets B = {ym+1, . . . , yn :

(∃x)[Dg(x) = {y1, . . . , yn}, y1, . . . , ym ∈ A]} and C = {x : x ∈ dom(g), |Dg(x) ∩ A| ≥ m}. Since

C contains the indices for the elements collected in B we know that |C| ≤ |B|. Now B is a

c.e. subset of A, and we can find an index for it effectively in n and uniformly in g. Using f

we get an upper bound c on the cardinality of B and hence we know that |C| ≤ c.

Compute a (partial) function r(i) as follows: search for the smallest 〈x1, . . . , xi, s〉 for

which x1, . . . , xi are pairwise different, and Dϕe,s(xj) ∩ As contains at least m elements for

every 1 ≤ j ≤ i. Let r(i) be 〈x1, . . . , xi〉.

The computation of r(|C|) converges and computes the indices of those sets which have

exactly m elements in A (remember that we are assuming that max{|Dg(x)∩A| : x ∈ dom(g)} ≤

m). If x is different from all |C| indices coded by r(|C|), then |Dg(x) ∩A| ≤ m− 1. Thus if we

knew |C| we could compute h′ recursively. Unfortunately we do not know the correct value of

|C|, so we have to consider the c functions (0 ≤ i < c):

ϕe(i)(x) =





g(x) if x 6= xj for all 1 ≤ j ≤ i,

where r(i) ↓= 〈x1, . . . , xi〉

↑ else,

Every such ϕe(i) describes a partial disjoint strong n-array for A, and one of them (namely

ϕe(|C|)) fulfills the inductive condition that all intersections with A have cardinality less than

m − 1. Hence we will get an upper bound on |dom(g)| if we consider all possibilities, i.e. let

h′(e, n,m) = max0≤i<c{i + h′(e(i), n,m − 1)}. Finally defining h(e, n) = h′(e, n, n− 1) finishes

the proof of the claim. 2

There is one more natural example for a thin set we should mention.

Theorem 6.10 MIN is (uniformly) thin.

We leave the proof to the reader. The basic observation is that MIN is effectively k-immune

uniformly in k.

7 Cuppability

Post showed that a simple set cannot be btt-complete. We have generalized that result to

non-c.e. sets by isolating the immunity property which is responsible for the incompleteness.

18

Another approach to the btt-incompleteness of simple sets would have been through degrees.

How incomplete are simple sets? Putting it differently: can the join of a btt-incomplete degree

with a simple degree be btt-complete? We will show that the answer is no.

Definition 7.1 A set A is called r-cuppable, if there is a c.e. set B such that ∅′ ≤r A ⊕ B

and ∅′ 6≤r B, where r is a class of reductions (like m, 1, btt, c, d, tt, wtt, T, e)

The following three results are known:

Theorem 7.2

• An immune set is not m-cuppable (Lachlan [10]).

• A hypersimple set is not wtt-cuppable (Downey, Jockusch [4]).

• A ∅′-hypersimple set is not e-cuppable (Nies, Sorbi [12]).

We will now show that an analogous statement is true for btt-reductions as well.

Theorem 7.3 A simple set is not btt-cuppable.

For the proof we need to have a closer look at some older results.

Proposition 7.4 (Lachlan [10]) If ∅′ ≤m A × B and at least one of A and B is c.e., then

either ∅′ ≤m A or ∅′ ≤m B.

Note that the proposition implies that immune sets are not m-cuppable. Kobzev proved

the following variant of Lachlan’s result by making some slight modifications to the proof.

Proposition 7.5 (Kobzev [8])

(i) If A is productive and B is c.e., then either A ∩ B or A ∩ B is productive.

(ii) If A is creative and B is computable, then either A ∩ B or A ∩ B is creative.

The second item easily follows from the first. For the theorem we need a uniform version

of the second item. Lachlan’s result, however, uses a nonuniform proof: two strategies are

pursued, one trying to build a reduction to A and the other a reduction to B. Furthermore

the second strategy will only yield a reduction which is correct up to finitely many errors.

Fortunately the first strategy yields a reduction uniformly, hence if we know that the first

strategy succeeds we get the reduction uniformly.

Lemma 7.6 If A is creative and B is computable and we know that exactly one of A∩B and

A∩B is creative and which one it is, then we can find a reduction from ∅′ to that set uniformly

in A and B.

Proof. Assume that ∅′ ≤m A and B is computable. We can then (uniformly) find a

reduction from ∅′ to (A ∩ B) × (A ∩ B) (using that A is c.e. and not empty). Assume that

exactly one of (A ∩ B) and A ∩ B is creative and we know which one. Start the Lachlan

proof with the uniform strategy working on the set we know to be creative. Since the other

19

strategy has to fail (the other set not being creative) this will (uniformly) yield a reduction to

the creative set. 2

We need another result for the proof. This result was proven independently by Lachlan

and Kobzev, the former using the technique of Proposition 7.4, the latter giving a proof using

his result on productive sets.

Proposition 7.7 (Kobzev [8], Lachlan [13]) A btt-complete set is bd-complete.

With this we are now ready to prove our result.

Proof of Theorem 7.3. Suppose ∅′ ≤btt A ⊕ B where A is simple, and B is c.e. By

Proposition 7.7 we know that there are two computable functions f and g from ω to P(ω) such

that x ∈ K iff f(x) ∩ A 6= ∅ or g(x) ∩ B 6= ∅.

For a set D define ED = {x : f(x) ⊆ D}. We claim that there is a finite set D ⊆ A such

that ∅′ ∩ED is creative. Since x ∈ ∅′ ∩ED iff x ∈ ED and g(x) ∩B 6= ∅ the claim implies that

∅′ ≤m ∅′ ∩ ED ≤bd B and we are done.

We are left with the verification of the claim. Assume for a contradiction that ∅′ ∩ ED is

not creative for any finite set D ⊆ A. Because of Proposition 7.5 this means that ∅′ ∩ ED is

creative for all finite subsets D of A. By Lemma 7.6 we can even find a productive function

for ∅′ ∩ ED uniformly in the finite set D. Start with D0 = ∅ and C0 = ED0
. Then C0 is a

c.e. set in the complement of ∅′ ∩ ED0
, hence we can find an element y0 ∈ K ∩ ED0

using the

productive function. For this element we have f(y0) ∩ A = ∅ and f(y0) 6⊆ D0 = ∅. Repeat

this procedure with D1 = f(y0), C1 = ED1
, and so on. Because of the uniformity we get a c.e.

set
⋃∞

i=0 Di which is a subset of A, since all the Di are, and infinite, since Dn+1 6⊆ Dn. This

contradicts the simplicity of A. 2

A closer look at the proof shows that we have also proved the following theorem.

Theorem 7.8 A simple set is not d-cuppable.

This is as much as we can expect from a simple set, since simple sets can be c-complete.

8 Conclusion

We have shown that k-immunity is a powerful tool in the study of bounded-truth table re-

ductions and establishes some hitherto unknown connections (between retraceability and btt-

hardness for example). We believe that by defining k-immunity explicitly we have isolated a

helpful notion that has been used implicitly in results of the past. Further research could aim

at collecting and unifying some of these results. It seems, for example, that k-immunity might

play a role in the study of effective versions of Ramsey’s Theorem or in frequency computation.

We also provided some initial results on ω-immune sets which are not hyperimmune, and

showed that there is a variety of sets residing in this realm, in particular the thin sets which

generalize effectively simple sets.

Acknowledgments Thanks are due to Martin Kummer and Lance Fortnow for comments

on an earlier version of this paper and to Stuart Kurtz for patiently listening to several attempts

20

at a proof of the non-cuppability result.

References

[1] K. I. Appel, T. C. McLaughlin. On Properties of Regressive Sets, Trans. Am. Math.

Soc., 115, 83–93, 1965.

[2] Martin Davis. The Undecidable, Raven Press, 1965.

[3] S. D. Denisov. Three theorems on elementary theories and tt-reducibility, Algebra and

Logic, 13, 1, 1–2, 1974.

[4] R. G. Downey and C. G. Jockusch. T-degrees, jump classes, and strong reducibilities,

Trans. Am. Math. Soc., 301, 103–136, 1987.

[5] Leo Harrington, Robert I. Soare. Post’s Program and incomplete recursively enumerable

sets, Proc. Natl. Acad. of Sci. USA, 88, 10242–10246, 1991.

[6] Carl G. Jockusch. Uniformly Introreducible Sets, J. Symb. Log., 33, 4, 521–536, 1968.

[7] G. N. Kobzev. Btt-reducibility, Algebra and Logic, 12, 107–115, 1973.

[8] G. N. Kobzev. On Complete Btt-degrees, Algebra and Logic, 13, 22–25, 1974.

[9] Martin Kummer. On the Complexity of Random Strings (Extended Abstract), 13.

STACS, 25–36, 1996.

[10] Alistair Lachlan. A Note on Universal Sets, Journal of Symbolic Logic, 31, 4, 1966.

[11] Albert R. Meyer. Program Size in Restricted Programming Languages, Information

and Control, 21, 382–394, 1972.

[12] Andre Nies, A. Sorbi. Branching in the Σ0
2 Enumeration Degrees, in preparation, 1997.

[13] Piergiorgio Odifreddi. Classical recursion theory, North-Holland, Amsterdam, 1989.

[14] Marcus Schaefer. A Guided Tour of Minimal Indices and Shortest Descriptions, to

appear in Archive for Mathematical Logic; a preliminary version of this paper is available

as: A Short History of Minimal Indices, Technical Report TR96-8-12, University of

Southern Maine, http://www.cs.usm.maine.edu/report/TR96-8-12.ps, 1996.

[15] Robert I. Soare. Computability and Recursiveness, Bulletin of Symbolic Logic, 3, 284–

321, 1996.

[16] Robert I. Soare. Recursively Enumerable Sets and Degrees, Springer, New York, 1987.

21

