CSCE 531, Spring 2015
Final Exam Answer Key

1. (40 points total) Consider the following grammar with start symbol S’

(a)
(b)

()

()

s - S
S — aSh
S —- T
T — Ta
T — ¢S
T €

(10 points) Find FIRST(S), FIRST(T), FOLLOW(S), and FOLLOW(T). You need not

justify your answer.

(15 points) Using the method described in class or the text, start to construct the set
{Io, I, I>,...}

of states for a canonical LR(1) parser for this grammar, defining the transition function
at the same time. Compute the start state Iy first, then only the possible transitions
from Iy. This should produce four additional states Iy, I, I3, I4, and you do not compute
any further transitions. You should display states in condensed form, that is, if there
are multiple lookaheads attached to the same LR(0) item, then list the item once with
the lookaheads separated by slashes, for example,

T — Ta, $/a

(Omit the brackets for all items.) Note that in class I denoted the transition function
as trans. The textbook denotes the same function as goto. You may use the letter ¢ to
denote this function.

(10 points) Give as much of the action table for this parser as you can, based on your
partial construction above. That is, define action[i,a] for each state I; and terminal a
(including $) that you can establish from your construction. Omit “error” entries.

(5 points) Describe any conflicts you find, if any, giving the conflicting actions.

Answer:

(a)

FIRST(S) = FIRST(T) = {a,c,e} , FOLLOW(S) = FOLLOW(T) = {a,b,$} .

Iy = start state : I, = t(ly,a) : Iy = t(ly,c)
S — .S, $ S — a.Sb, $ T — ¢S, $/a
S — .aSh, $ S — .aSh, b S — .aSh, $/a
S—.T, $ S—.T, b S—.T, $/a
T — .Ta, $/a T — Ta, b/a T — .Ta, $/a
T — .cS, $/a T — .cS, b/a T — .cS, $/a
T—., $/a T— ., bla T—., $/a

I = t(Io, S) : I3 = t(Ip, T)
S 5.8 ST, $

T—T.a, $/a

(c) We omit any action items that mention states we have not already constructed.

a b c $
0 | shift 2, reduce T' — € shift 4 | reduce T' — €
1 accept
2 reduce T' — € reduce T — €
3 reduce S — T
4 reduce T' — € shift 4 | reduce T — €

(d) Our table in (c) above indicates a shift/reduce conflict in action|0,a] and no other
conflicts. However (and this is optional), we know that there will be shift /reduce conflicts
in action|2,a] and action[4, a).

2. (20 points) Consider a bottom-up grammar in BNF for control flow constructs in a typical
Pascal-like programming language

= (stmt)

= if e then (stmt),

= if e then (stmt), else (stmt),
= repeat (stmi_list) until e

:= begin (stmt_list) end

= break

stmt
stmt) ::= other
(stmt_listy == /* empty */

= (stmit_list), *;° (stmt)

A break statement is meant to unconditionally jump to the end of the closest surrounding
repeat-loop, if there is one. (Note that a break statement might jump out of an arbitrary
number of nested if and begin-end statements.)

Add semantic rules to compute the following inherited attribute: (stmt).break is a string that
is the destination label to which to jump if a break statement is encountered within (stmt).
If the statement is not inside any repeat statement, then use the special value NIL for this

attribute. You may assume a function newSymbol() is available that returns a fresh label
every time it is called.

Also add semantic actions that

e emit an unconditional jump to the proper destination whenever a break statement is
encountered (if there is no proper destination, issue an error message), and

e emit the corresponding break destination as a label (i.e., followed by a colon) after each
repeat statement.

You may assume a function emit(...) is available that emits whatever string is passed to
it.

You may define any additional attributes that you find helpful, but you must pass all data
around on the semantic stack, i.e., you may not declare or use any external (global) variables
or data structures. Also, your syntax-directed translation scheme must be L-attributed, and
no intermediate actions are allowed.

Answer:
(start) ::=(stmt) (stmt).break := NIL
(stmt) ::=if e then (stmt), (stmt), .break :=(stmt) .break

(stmt) ::=if e then (stmt), else (stmt), (stmt), .break :=(stmt) .break;
(stmt), .break := (stmt).break

(stmt) ::=repeat (stmt_list) until e (stmt_listy .break := newSymbol();
emit((stmt_list) .break); emit(“:”)

(stmt) ::=begin (stmt_list) end (stmt_list) .break :=(stmt) .break

(stmt) ::=break if (stmt) .break <> NIL then
emit(“goto”); emit((stmt) .break)
else

semantic_error()
(stmt) ::=other
(stmt_list) = /* empty */

(stmt_list) :=(stmt_list), *;° (stmt) (stmt_list), .break :=(stmt_list) .break;
(stmt) .break :=(stmt_list) .break

3. (20 points) Consider the following bison grammar for a C-like programming language fragment
(with start symbol assignment):

assignment :

expr ’=’ expr ’;’

expr :
expr ’+’ unary
| unary
unary
’*’ unary
| ’&’ unary
| factor
factor :
CONST
| VAR
I 1(7 expr))J
Note:

Add

The assignment operator ’=’ requires an L-value for the left-hand expr, and an R-value
for the right-hand expr. (The assignment itself returns no value.)

The addition operator ’+’ requires two R-values and returns an R-value.

The pointer indirection operator ’*’ requires an R-value and returns an L-value.
The address-of operator ’&’ requires an L-value and returns an R-value.
Constants (CONST) are R-values, and variables (VAR) are L-values.

Parentheses have no effect on the kind of value (R- versus L-).
bison-appropriate semantic actions that do three things:

Compute, as synthesized attributes of expr, unary, and factor, whether or not the
(sub)expression is an R-value or an L-value. Use the integer value 0 to mean R-value
and 1 to mean L-value. Compute these using the usual $-references.

Issue instructions (for a human being) to dereference an operand whenever it is an L-
value but an R-value is expected for the operation. For example, when the left operand
of the '+’ operator is an L-value, then include the action

msg("deref left operand");

in that production (and similarly for the right operand).

Whenever an R-value is present where an L-value is expected, include the action

error("L-val expected");

Do not use any intermediate actions, only reduce-actions. You do not need to provide the
human with any other information, e.g., which production generates a particular message.
You also need not worry about (data) types of expressions.

Answer:

assignment :
expr ’=’ expr ’;’ { if (!$1) error("L-val expected");
if ($3) msg("deref right-hand side");

}
expr :
expr ’+’ unary { if ($1) msg("deref left operand");
if ($3) msg("deref right operand");
$$ = 0;
}
| unary /* default action: $$ = $1; */
unary :
’x’ unary { if ($2) msg("deref operand");
$$ = 1;
}
| °&’ unary { if (1$2) error("L-val expected");
$$ = 0;
}
| factor /* default action */
factor :
CONST {$$=0; }
| VAR {$$=1; 1}
| > expr ’)° { $$ =825 }

4. (15 points) Consider the following Pascal declaration:

var
a : arrayl[3..10] of array[2..9] of array[4..8] of Real;

Assuming that a Pascal Real is eight bytes and that the base address of a is 1500, find the
base address of the Real variable a[9] [6] [5].

Answer: [Note: the original question mistakenly suggested that a[9] [6] [5] is an integer
variable. It is a Real variable.] Here are the sizes of the relevant types:

type ‘ size
Real 8
array[4..8] of Real (8—4+1)-8=40

array[2..9] of array[4..8] of Real | (9—2+1)-40 =320
Thus the base address of a[9] [6] [5] is

1500 + (9 — 3)320 + (6 — 2)40 4 (5 — 4)8 = 1500 + 2088 = 3588 .

5. (25 points total) Consider the following three-address code (line numbers added):

1 L1: i:=a

2 tl :=1+5

3 L2: if t1 <= 10 then goto L4
4 ji=1+1

5 if j >= 0 then goto L2
6 a :=a+ j

7 L3: if j <= 10 then goto L5
8 L4: i=3+1

9 tl = 2 % j

10 goto L3

11 L5: a:=tl1-1

12 if a > 0 then goto L1
13

Assume that control enters at line 1 and that there are no other entry points.
(a) (5 points) Describe the basic blocks By, Ba, ... by giving an inclusive range of line num-
bers for each block.

(b) (10 points) Draw the flow diagram as a directed graph, labeling the nodes Bi, B,
Give dangling arrows both for the entry point and for the exit point of the code as a
whole.

(c¢) (5 points) Using the strict definition of a loop as defined in class and in the text, list any
sets of vertices that constitute loops. Label any inner loop(s) as such.

(d) (5 points) Is the variable j alive between lines 2 and 37 Explain.

Answer:

(

) | Block | Line(s) |

By 1-2
By 3
B3 4-5
By 6
Bs 7
Bg 8-10
By 11-12

(b)
(¢) There are two loops:
i {Bl7 B27 B37 B47 B5a BG) B7}
e {By, B3} (inner loop).

(d) Yes, j is alive. Line 3 could go to line 8, where j is used but not set in between.

