Graph Algorithms

A directed graph (digraph) is a pair \(G = (V, E) \) where

\(V \) is a set of vertices

\(V = \{v_1, \ldots, v_n\} \) (n vertices) and

\(E \subseteq V \times V \) is the set of edges

\((u, v) \in E \)

\(v \) is adjacent to \(u \).

\(v \) is adjacent from \(u \).

2 reps as a data struct:

Adjacency Matrix:

\[
A[1 \ldots n, 1 \ldots n] = \begin{cases}
1 & \text{if } (v_i, v_j) \in E \\
0 & \text{otherwise}
\end{cases}
\]
only deal with **simple**
graphs (no self-loops,
i.e., \(A[i,i] = 0 \) for
\(1 \leq i \leq n \)) and no
multiple edges between
vertices.

Adjacency List (Edgelist)

Array \(V[1..n] \)

\(V[i] \) is head of a
linked list of vertices
adjacent from \(V_i \)

adj Matrix

adj list rep is usually preferred.

\(n \) vertices
\(m \) edges

size of adj Matrix:
\(\Theta(n^2) \)

""" list: \(\Theta(n+m) \)

each edge corresponds to a unique list
item
augmentable with other info, edge weights, vertex weights, etc.

undirected graphs:

\[u \leftrightarrow_v \text{edge} \]

adj relation is symmetric, represent as digraph as follows:

\[u \rightarrow_v \]

\[G^T : \text{transpose of digraph } G \]

\[u \rightarrow_v \iff u \leftarrow_v \text{ in } G^T \]

adj matrix for \(G^T \) is the transpose of the adj matrix for \(G \).

Exercise: Given adj list rep for \(G \), produce an adj list rep for \(G^T \) in time \(\Theta(n+m) \).

Graph Search

Given initial vertex \(V \) systematically follow edges to find other vertices reachable from \(V \) and we visit them.
Box B is some data structure that holds the gray vertices.

B must support:

- $\text{Make}(B)$: initialize B empty
- $\text{Empty}(B)$: test if B is empty
- $\text{Insert}(x, B)$: insert item x into B
- $\text{Delete}(B)$: remove and return an item from B

GenericSearchAt(G, v)

// searches all vertices
// reachable from v
// assumes $\text{color}[v] = \text{white}$
// B is a local box

$\text{Make}(B)$

$\text{Start}(v; \text{nil})$

Start called on v when color changes from white to gray
\text{color}[v] := \text{gray} \\
\text{Insert}(v, B) \\
\text{Update}(v; \text{nil}, B) \\
\text{called whenever we encounter a gray vertex}

\text{repeat} \\
\quad u := \text{Delete}(B) \\
\text{Finish}(u) \\
\text{last processing of a vertex}
\text{color}[u] := \text{black} \\
\text{for each } w \text{ adjacent from } u \text{ do} \\
\quad \text{// traverse edge } (u, w) \\
\quad \text{if } \text{color}[w] = \text{white then} \\
\quad \quad \text{// u "discovers" w} \\
\quad \quad \text{Start}(w; u) \\
\quad \quad \text{color}[w] := \text{gray} \\
\quad \quad \text{Insert}(w, B) \\
\quad \text{if } \text{color}[w] = \text{gray then} \\
\quad \quad \text{Update}(w; u, B) \\
\text{until Empty}(B)
Start \(|V| \)
Update \(|E| + 1 \)
Finish \(|V| \)

Breadth-First Search (BFS):

- \(B \) is a simple queue (FIFO)
- process \(V \)
 - then neighbors of \(V \)
 - then neighbors of neighbors, etc.
- vertices are finished in increasing order of distance (unweighted) from \(V \)

Use BFS to find unweighted distance from \(V \):

- \(B \) queue
- Update, Finish are no-ops.

\[
\text{Start}(w \cdot u) \\
\text{if } u = \text{nil} \text{ then} \\
\quad d[w] := 0 \\
\text{else } d[w] := d[u] + 1
\]
Depth-First Search (DFS)

B is a stack (LIFO)