Binomial Heaps

((Mergeable Heaps))

Binomial Trees

Def: A binomial tree of height \(k \) is a rooted ordered tree whose shape is specified inductively:

\(k = 0 \): \(B_0 \) (one node)

\(k > 0 \): \(B_k \) constructed from 2 \(B_{k-1} \)'s like this:

- new leftmost child of root

size of \(B_k = 2^k \)
height of \(B_k = k \)

\(B_0 \cup B_1 \cup B_2 \)

\(B_3 \)

Degree of a node is \# of children.
Degree of root of \(B_k = k \)
all other nodes have degree < k.

\[\text{B}_k \]

(all easy by induction).

\[\text{max degree of any node in binomial tree of size } n \text{ is } \log_2 n. \text{ (} n = 2^k \text{ and all nodes of degree } \leq k.) \]

A Binomial Heap \(H \) is a list of binomial trees \(B_{k_1}, B_{k_2}, \ldots, B_{k_n} \) so that:

- \(k_1 < k_2 < \ldots < k_n \)
- Each \(B_{k_i} \) contains items with key values in its nodes (one item per node. (Assuming min heap) These items are in min-heap order.

The items of \(H \) are all items contained in the trees in the list.

H empty: empty list.

Spec \(H \) has size \(n > 0 \)
let $k_0 < k_1 < \ldots < k_{l-1}$
be heights of the trees
in H’s list.
Since $k_{l-1} \geq l-1$,
\[
 n = \sum_{i=0}^{l-1} k_i \geq 2^{l-1}.
\]
\[
 l = O(\log n)
\]
Exactly one way to represent
any $n \geq 0$ as a sum of
distinct powers of 2,
so shape of H is uniquely
determined by its size.

Implementing H:
Use usual linked rep
for each tree, with
\[
 \begin{align*}
 \text{parent} & \quad \text{other-fields:} \\
 \text{leftmost-child} & \quad \text{key} \\
 \text{right-sibling} & \quad \text{satellite} \\
 \text{fields} & \quad \text{data} \\
 \end{align*}
\]
Link tree together in list
by the right-sibling
fields of their roots.

Basic Ops:
Making an empty H:
\[
 \text{head}[H] \text{ points to list of trees. Set to null.}
\]
\[
 \mathcal{O}(1) \text{ time}
\]
Finding the minimum in H: search roots of trees for minimum key value and return it.

$O(\log n)$ where

$n =$ size of H

(# trees is $O(\log n)$)

Merging two binomial heaps H_1, H_2.

 Traverse list of roots of both heaps, merge the lists in order of increasing height.

 Problem: duplicate tree heights.

 May encounter a B_k in H_1 and a B_k in H_2

 if $x \leq y$, combine:

 if $x > y$, swap trees; always make lesser key new root.
Takes $O(1)$ time!
- Compare root values
- Insert one root at the front of the linked list of the other root's children.

Now may have up to $3B_{k+1}$'s. Combine 2 of them and include the third (if it exists) in the result. Continue.

[like binary add with carry]

Time: $n = \text{size of new heap linear in list lengths}$
\[= O(\lg n) \]

Inserting into a binomial heap H a new item x:
- H
- Form H_1 with just x (in B_0)
- Merge H with H_1

Total time $= O(\lg n)$.

\underline{ExtractMin}:
- Find tree containing minimum $O(\lg n)$ time
-unlink this tree from H's list
0(1) time

reverse temp list.
temp now points to a binomial heap.
list has length \(k \leq \lg n \),
so reversal takes time \(O(\lg n) \).
Merge \(H \) with this temp heap. \(O(\lg n) \) time
\(O(\lg n) \) time total.

Decrease Key: same
For a binary heap:
cascade (bubble) up
the node with decreased key towards the root.
Time: \(O(\text{height of tree}) \)
\(= O(\lg n) \).
Delete (x):
 O(1n) Decrease x's key to -\infty (some small value)
 O(1n) ExtractMin

Disjoint set systems.
Collection \(C = \{S_1, \ldots, S_k\} \)
where each \(S_i \) is a set of items, and \(S_i \cap S_j = \emptyset \)
for \(i \neq j \).

3 basic ops:
MakeSet(x): create
a new set whose
only element is x.
(x not in any other
set of the system).

Find(x) finds the
unique set containing x

Union(x,y): merges the
set containing x with
the set containing y.
(the two original sets
are destroyed).

Represent each set by some
distinguished element of the
called the representative of the set.

\(\text{Find}(x)\) returns the representative of the set containing \(x\).

\(x\) and \(y\) are in same set iff \(\text{Find}(x) = \text{Find}(y)\).