Amortized Analysis

Data Structure

where operations may take different amounts of time, depending on the State of the data Structure.

Only care about total time taken by a sequence of n operations (worst case)

Example: binary counter.

Stores a natural number in binary.

Ops:
reset – set counter to 0
increment – add one to counter
display – output current contents

Assume:
reset
n increments (for some n)
display
list of bits
need k bits, where
k = \lceil \log n \rceil + 1
Increment takes
\(\Theta(k) \) worst-case time.
\(\Theta(lg n) \) (per increment)
worst-case

Total time for \(n \) increments
is \(O(n \lg n) \).

Tight? No
Worst case happens rarely in the sequence.

Suppose \(i \) carries:
\[
...01\ldots11111
\]
\[
10\ldots00000
\]

\[\frac{n}{2^i} \] multiples of \(2^i \)
from 1 to \(n \)
\[\frac{n}{2^i} \] many odd multiples of \(2^i \) in \(\{1, \ldots n\} \).

\[\Theta\left(\frac{n}{2^i}\right) \] \(i \) carries takes \(\Theta(i) \) time.

Total time for \(n \) increments
\[T(n) = \Theta \left(\sum_{i=0}^{\infty} i \cdot \frac{n}{2^i} \right) = \]
$T(n) = \Theta \left(n \sum_{i=1}^{k} i \right) = \Theta \left(n \sum_{i=1}^{\infty} \frac{i}{2^i} \right) = \Theta(n)$ converges

upper bound $S(n)$ is obvious, so $T(n) = \Theta(n)$ on average, $O(1)$ time per increment.

$O(1)$ amortized time per increment.

An operator (or set of possible operations) takes amortized time t if any sequence of n such operations takes $\leq tn$ total time (in worst case) increment takes $O(1)$ amortized time decrement?
counter (initially 0)
a sequence of
n ops (increment/decrement)
amortized time per op?

\[2^i \text{ many increments where} \]
\[\frac{n}{4} \leq 2^i \leq \frac{n}{2} \]
\[i \geq \lg n - 2 \]
from now on, alternate
decrement/increment

Total time for this particular sequence is
\[\geq \frac{n}{2} (\lg n - 2) = \Omega(n \lg n) \]

\[\therefore \Omega(\lg n) \text{ amortized} \]
time per op
no better than
non-amortized time.

Better implementation
of increment/decrement
counter:
\[b_{k-1} b_{k-2} \ldots b_1 b_0 \]
each \(b_i \in \{0, 1\}^3 \)

represents each
number in the range
\[0 - 2^k - 1 \]
\[n = \frac{2^k - 1}{2^3} \cdot b_i \]
Alternative:
store
\[b_{k-1} \ldots b_0 \]
where each \(b_i \in \{ -1, 0, 1 \} \)
represents the number
\[n = \sum_{i=0}^{k-1} 2^i b_i. \]

\(n \) no longer has a unique representation.

\[5 = 101 \]
\[= 2 \cdot (-1) \cdot (-1) \]
\[= \boxed{021} \]
increment: only carry if sum of digits is \(> 2 \)

\[\begin{array}{c}
021 \\
+ \quad 022
\end{array} \]
\[\begin{array}{c}
\hline
111
\end{array} \]

after a carry

\[\begin{array}{c}
16 \quad b
\end{array} \]
\[+ \quad c \]
\[\begin{array}{c}
d = 1
\end{array} \]

3 methods for amortized analysis:
- aggregate
- accounting
- potential
Example: Stack with multipop:

ops:

$O(1)$—push 1 item onto stack

$O(k)$—pop k items off stack

Start with empty stack, any sequence of n ops.

Aggregate method:

$\leq n$ pushes, so $\leq n$

different items total:

an item is pushed initially, sits there
for a while, then is popped (maybe).

For an item:

1 unit of time to push it

1 unit of time for that item
during a pop

≤ 2 units of time spent processing
any single item.

$\leq n$ items processed

$\leq 2 \cdot n = O(n)$
So $O(1)$ amortized time per operation.

Example: dynamic table resizing.