Recall: Huffman Coding

\[C = \{ c_1, \ldots, c_n \} \]

0 < \(f(c) \) = frequency of \(c \)
for all \(c \in C \).

Encoding tree: binary tree where:

1. leaves are labeled with all \(c_i \) (n leaves) (1-1 correspondence)
2. Each internal node has 2 children

Optimal tree for \(C \): ("Huffman tree")
is least cost tree
where the cost of tree \(T \) is given by

\[B(T) = \sum_{i=1}^{n} f(c_i) d_T(c_i) \]

where \(d_T(c) \) is depth of leaf \(c \) in \(T \).

\(B(T) \) = bit length of coded binary file.

To construct a Huffman tree for \(C \):
1. Let Q be a min priority queue (empty)

2. Insert letters c₁, ..., cₙ into Q, keyed by frequency f[cᵢ].

3. For i := 1 to n-1 do:
 \[
 \begin{cases}
 x := \text{ExtractMin}(Q) \\
 y := \text{ExtractMin}(Q)
 \end{cases}
 \]
 Form new node z:
 \[
 f[z] := f[x] + f[y] \\
 \text{left}[z] := x \\
 \text{right}[z] := y
 \]
 Insert z into Q.

4. r := \text{ExtractMin}(Q)
 // Q is empty
 Return r as root of the Huffman tree.

Each iteration:

```
x               2z
   \
x               y
```

Recursive version:
if |C| = 1 then
return sole element of C as the root
else
let \(x, y \) be the two els of \(C \) with lowest frequency.

let \(z \in C \) be a new letter.

\[
f[z] := f[x] + f[y]
\]

\[
C' := (C - \{x, y\}) \cup \{z\}
\]

\[
r := \text{Huffman Tree}(C')
\]

// recursive cell

\(r \) is root of a tree \(T' \).

find leaf \(z \) in \(T' \) and replace it with

\[
\begin{array}{c}
T' \\
\Rightarrow \\
T
\end{array}
\]

return root of \(T \).

Proof of correctness:

Lemma: Let \(T \) be any encoding tree for \(C \).

let \(x, y \) be two nodes in \(C \) of least frequency.

Then there is an tree \(T' \) for \(C \) where \(x, y \) are siblings (on deepest level) in \(T' \) and \(B(T') \leq BG \).
Proof:

Let \(a\) and \(b\) be the two leftmost nodes on the deepest level of \(T\).

(easy: \(a, b\) are siblings).

If \(\exists a, b \in \mathcal{S} = \{x, y, z\}\), then let \(T' = T\). Done.

Otherwise one of \(x\) and \(y\) is not in \([a, b]\). Assume that \(x \notin [a, b]\) and \(a, y\).

\[
\begin{align*}
 d_T(x) & \leq d_T(a) \\
 f[x] & \leq f[a]
\end{align*}
\]

Form \(T'\) to be \(T\) but with \(x\) and \(a\) swapped.

\[
\begin{align*}
 B(T) - B(T') &= f[x]d_T(x) + f[a]d_T(a) \\
 &\quad - f[x]d_T'(x) - f[a]d_T'(a) \\
 &\quad + \underbrace{\text{(cancelling terms)}}_{0}
\end{align*}
\]

\[
\begin{align*}
 &\begin{cases}
 d_T'(x) = d_T(a) \\
 d_T'(a) = d_T(x)
 \end{cases}
\end{align*}
\]
\[= f(x) d_T(x) + f(a) d_T(a) - f(x) d_T(a) - f(a) d_T(x) \]
\[= (f[a] - f[x]) (d_T(a) - d_T(x)) \]
\[\geq 0 \quad \geq 0 \]
\[\geq 0 \]
\[\therefore B(T) - B(T') \geq 0 \]
\[\therefore B(T') \leq B(T). \]

If \(y \neq b \) then swap \(y \) and \(b \) in \(T' \) to get some \(T'' \) such that \(B(T'') \leq B(T') \).

Then \(B(T'') \leq B(T) \) and \(x, y \) are silos in \(T'' \) (deepest level) //Lemma

Theorem: Let \(x \) and \(y \) be two min freq letters in \(C \). Let

\[C' = (C - \{x, y\}) \cup \{z\} \]

where \(z \in C \) and freqs of letters in \(C' \) are the same as in \(C \), but \(f[z] = f[x] + f[y] \).
Suppose that T' is any optimal (least cost) encoding tree for C.
Let T be same as T' but with leaf z replaced with xy.
Then T is an optimal encoding tree for C.

"If recursive call returns an optimal T' for C' then original call returns an optimal tree T for $C."$

Correctness of algo follows by induction on $|C|$ (size of the alphabet).

Proof: Assume not true, i.e., the tree T described is not optimal for C.
Prove that T' was not optimal for C' (contradiction). Since T is not optimal, there is some encoding tree T'' for C such that $B(T'') < B(T)$.

Nov 13 1:58 PM
Without loss of generality, x and y are siblings in T'' (by the lemma).

Remove x, y from T'' and label their parent (now a leaf) z with $f[z] = f[x] + f[y]$ to get new tree T''' for C'.

Claim: $B(T''') < B(T')$

But T' was optimal for C' by assumption, so this is our contradiction.

Proof of Claim:

Compare $B(T)$ with $B(T')$

$B(T)$ with $B(T''')$
\[B(T) = B(T') \]

\[
= -f[z]d_{T'}(z) + f[x]d_T(x) + f[y]d_T(y)
\]

\[
\left[d_T(x) = d_T(y) = d_{T'}(z) + 1\right]
\]

\[
= B(T') - f[z]d_{T'}(z) + \left(f[x] + f[y] \right) (d_{T'}(z) + 1) \frac{f[z]}{f[z]}
\]

\[
= B(T') - f[z]d_{T'}(z) + f[z](d_{T'}(z) + 1)
\]

\[
= B(T') + f[z]
\]

\[
= B(T') + f[x] + f[y]
\]

Again:

\[
B(T) = B(T') + f[x] + f[y]
\]

By same analysis:

\[
B(T'') = B(T''') + f[x] + f[y]
\]

So,
\[S_0, \]
\[B(T) - B(T'') \]
\[= (B(T') + f[x] + f[y]) \]
\[- (B(T'') + f[x] + f[y]) \]
\[= B(T') - B(T'') \]

Assumed that \(B(T'') < B(T) \)
so \(B(T) - B(T'') > 0 \)

But then
\[B(T') - B(T'') > 0, \]
so \(B(T''') < B(T') \)
so \(T' \) not optimal for \(C! \) \quad // \text{Claim.} \]

Ends proof of correctness

Time to construct Huffman tree on \(E, c_1, \ldots, c_m \)
\[
= \Theta(n \log n)
\]

\# of initial insertions and loop iterations
\text{time per insertion/extract}

Next time: Amortized Analysis.