Recall:

RB tree T with n nodes. Show: $\text{height}(T) = O(\log n)$.

Last time: for any node $p \in T$, subtree rooted at p has $\geq 2^{\text{bh}(p)} - 1$ many nodes. (Induction on height of p)

$\text{bh}(p) = \# \text{ black nodes encountered along any path from } p \text{ to a leaf (excluding } p).$

$n = \text{ size of tree rooted at root}[T] \geq 2^{\text{bh}(r)} - 1$

where $r = \text{root}[T].$

Notice: $\text{height}(r) \leq 2 \text{bh}(r).$

Why? Because no two red nodes in a row along any path.

So: $\text{bh}(r) \geq \frac{\text{height}(r)}{2}$
\[n = \text{size at } r \\
\geq 2^{\frac{\text{height}(r)}{2}} - 1 \\
\geq 2^{\frac{\text{height}(r)}{2}} - 1 \\
n + 1 \geq 2^{\frac{\text{height}(r)}{2}} \\
1 \log(n + 1) \geq \frac{\text{height}(r)}{2} \\
2 \log(n + 1) \geq \text{height}(r) \\
= h \quad (\text{height of } T) \]

Implementing RB trees as a data struct.

3 basic ops:

- \text{Search}(T, x) — find item with key \(x \) in \(T \)
- \text{Insert}(T, x): insert \(x \) into \(T \).
- \text{Delete}(T, x): remove \(x \) from \(T \).

\text{Search}: just as in any BST. \(O(\log n) \) worst-case time.

\text{Insertion}: Insert \(x \) into \(T \) (assuming \(x \) is not in \(T \) already).
\(T \) empty: insert \(x \); color \([x] := \text{black} \)
Assume T not empty before inserting x.

2 phases:
- insert phase
 - as with
- clean-up phase
 - just as with regular BST:
 - x becomes a new “leaf”
 - $\text{color}[x] := \text{red}$

Only possible violation:
$\text{color}[\text{parent}[x]] = \text{red}$.

Clean-up phase:
- if $\text{color}[\text{parent}[x]] = \text{black}$
 - then do nothing & exit.

 // parent(x) is red

Assume that parent(x)
- is a left child
 (if parent(x)
 - is a right child
 - then do all of the following in mirror image):
 - (parent(x) not root since it is red)
if \(x \) is right child, then rotate left at \(y \).

Digression: Rotations in general:

rotate left at \(p \)

rotate right at \(q \)

Rotation takes \(O(1) \) time.

End-of-digression
(If \(x \) is left child, then go on to next step):

Either:

- **\(B R \)**

 \[
 \begin{array}{c}
 x \\
 y \\
 \\
 R \\
 \end{array}
 \]

 * or *

- **\(B R \)**

 \[
 \begin{array}{c}
 x \\
 y \\
 \end{array}
 \]

 treat both the same:

Suppose

- **\(R B \)**

 \[
 \begin{array}{c}
 x \\
 y \\
 \end{array}
 \]

 \(w \) is \(x \)'s sibling

- **\(R R \)**

 \(y \)'s uncle

If \(\text{color}[w] = \text{red} \):

- \(\text{color}[x] := \text{black} \)
- \(\text{color}[w] := \text{black} \)
- \(\text{color}[z] := \text{red} \)

What if parent \([z] \) is red?

Answer: repeat.

\[
\begin{array}{c}
A \\
R \\
R \\
\end{array}
\]

Do same with \(t \),

as with \(x, z \) (recursive)

Recursion ends because root is black.

Last case to deal with:

- **\(B R \)**

 \[
 \begin{array}{c}
 x \\
 w \\
 \end{array}
 \]

 \(\text{color}[w] = \text{black} \)

- **\(R R \)**

 \[
 \begin{array}{c}
 x \\
 w \\
 \end{array}
 \]

 \(y \)

Rotate right at \(z \)

adjust colors
The AVL condition:

A binary tree T satisfies the AVL condition if any two siblings in T differ in height by ≤ 1.

Prop: If T has size n and has the AVL property then T has height $O(\lg n)$.

Proof: Given some height $h \geq -1$ ($\text{height}(\emptyset) = -1$ by convention), let $m_h = \text{smallest possible}...
The size of any AVL tree with height h:

\[m_{-1} = 0 \]
\[m_0 = 1 \]

Assume $h > 0$

An AVL tree of height h:

\[
\begin{align*}
& h \\
& \left[\begin{array}{c}
& \left[\begin{array}{c}
& h-2 \\
& m_{h-2} \\
& m_{h-1}
& \end{array} \right]
& \end{array} \right] \\
& h-1
\end{align*}
\]

So: if $h > 0$

\[m_h = m_{h-2} + m_{h-1} + 1 \]

\[
\begin{align*}
& m_{-1} = 0 \\
& m_0 = 1 \\
& h > 0: \ m_h = m_{h-2} + m_{h-1} + 1 \\
\end{align*}
\]

Fibonacci sequence:

\[
\begin{align*}
& F_0 = 0 \\
& F_1 = 1 \\
& n > 1: \ F_n = F_{n-2} + F_{n-1}
\end{align*}
\]