
csce750 — Analysis of Algorithms
Fall 2020 — Review Sheet for Final Exam

Date and time: Tuesday, December 8, 12:30–3:00pm

X The test will cover the entire course, but with a slight emphasis on material covered in Lec-
tures 25–28.

X You’ll have 150 minutes to complete the exam. The exam will be distributed by email shortly
before 12:30pm and must be returned by email by approximately 3:15pm. Unless you re-
quest a different address, we will use the official email address on the class roll.

X Your quiz should be submitted as a single pdf file. (Download a scanner app on your phone
(recommended) or print image to PDF.) Each question should be answered on a separate
page. Your file name should be “FirstName LastName final.pdf”. Your name should be
written clearly, on every page, in a place that is visible and not cut off. Be advised that
putting your name at the very top of a page will often cut it off when it is saved/scanned.
You must sign your name on the agreement page. If you cannot print the agreement page,
please copy the agreement and sign your name near it.

X Each question will be loosely derived from a homework problem. The intention is that if
you can correctly solve all of the homework problems, and understand those solutions well
enough to competently grade other answers to those questions, then you are likely to be
well-prepared for the exam.

The rest of this document is a general outline of the topics we covered for this exam.

Introduction, Asymptotic Notations
• What is an algorithm? Relationship between instance, algorithm, and output. General idea

of the RAM model.

• Asymptotic notations: O, Ω, Θ, o, ω. Definitions and intuition for each. Limit rules. Anony-
mous functions (what do expressions like T (n) = 2n2 +O(n) mean?)

Summations
• Basic definition, including infinite summations.

• Arithmetic series.

• Geometric series, both finite and infinite.

• Telescoping sums.

• Bounds via integrals.

csce750 Review Sheet for Final Exam 1 of 5



Recurrences: Substitution Method
• What is a recurrence? Why are they important?

• Smoothness rule: When does it apply? Why do we care?

• Substitution method: Basic steps. Why does it work? Don’t change the constant. Proving
stronger bounds if needed. Change of variables: Don’t forget to change back at the end.

Recurrences: Tree Method, Master Method
• Recursion trees: Basic steps. What do the nodes represent? What do the edges represent?

Differences between full trees and ‘lopsided’ trees.

• Master theorem: Be able to (1) identify when it applies and when it doesn’t, and (2) use it
when it does apply.

• General: Given a recurrence, be able to select and use an appropriate solution technique.

Heaps, Heapsort, Quicksort, Randomized Quicksort
• Heaps: What is a heap? What does MAXHEAPIFY do? How does MAXHEAPIFY work? How

does BUILDMAXHEAP work? Why is its runtime O(n) instead of O(n log n)? How can a
heap be used to implement a priority queue? How does Heapsort work?

• Quicksort: What does PARTITION do? How does it work? How long does it take? What does
the array look like when partition is done? Analysis of Quicksort, especially the recurrence
with the max operation (instead of assuming what the worst case is). What is the worst-case
run time of Quicksort?

• Randomized Quicksort: Difference between worst-case, average case, and worst-case ex-
pected run time. How does the analysis of Quicksort change if we select the pivot at ran-
dom?

Lower Bounds, Medians, and Order Statistics
• Decision tree method: What is a decision tree? How is it related to the run time of an algo-

rithm? Given a problem, be able use the decision tree method to prove a lower bound (Hint:
This does not involve drawing any particular decision tree.)

• Order statistics: What is the selection problem? How does Quickselect solve this problem?
Analysis for Quickselect. Linear time selection, especially its analysis: Where does each part
of the recurrence come from? Why do we divide into groups of 5?

Hash tables
• What is a hash table? Difference from a direct address table. Properties of a good hash

function.

• Using hash tables as a data structure to solve other problems.

• Simple uniform hashing assumption. Analysis of hash table run times under this assump-
tion.

• Collisions. Resolving via chaining. Resolving via probing.

csce750 Review Sheet for Final Exam 2 of 5



Balanced Binary Search Trees, Treaps
• What is a binary search tree? Why is balancing important?

• Rotations: What are they? Why are they a reasonable thing to do to a BST? Be able to perform
left and right rotations at given nodes of a BST.

• Treaps: What extra information is stored? How does the insert operation use this extra
information? How does the search operation use this extra information? What invariants
are maintained for the keys? For the priorities? Treap analysis: Why do random priorities
help? How are treaps different from simply randomizing the order in which the keys are
inserted?

Augmenting Data Structures
• What does the verb ‘augmenting’ mean in this context? Why would we use this kind of

approach?

• Basic steps for augmenting a data structure. Choose, determine, modify, develop.

• Dynamic order statistics. What problem is being solved? How does it differ from the stan-
dard selection problem solved by quickselect? What information is added to the standard
balanced binary search tree data structure? How is this information updated during the
standard BST operations? How is it used to implement the select and rank operations?

Dynamic Programming
• What is dynamic programming? How does it differ from divide-and-conquer?

• Basic steps for designing a DP algorithm. How do the recurrences we write here differ from
the ones we write for analyzing recursive algorithms?

• Rod-cutting. What is the problem? What family of subproblems is used to solve it? What
recurrence describes the solutions? What are the dimensions of the DP table? In what order
is the DP table filled? How is the final solution extracted from the table?

• Matrix chain multiplication. What is the problem? What family of subproblems is used to
solve it? What recurrence describes the solutions? What are the dimensions of the DP table?
In what order is the DP table filled? How is the final solution extracted from the table?

Amortized Analysis
• What is the goal of amortized analysis? When is it useful? What inequality is necessary to

ensure that we’ve performed amortized analysis correctly?

• Potential method: Define a potential function mapping data structure snapshots to real num-
bers. Do not mention operations when defining the potential function. Show that potential
function starts at 0 and is never negative. Compute amortized cost for each operation: ac-
tual cost plus change in potential. Understand the intuition for choosing a correct potential
function.

csce750 Review Sheet for Final Exam 3 of 5



Fibonacci Heaps
• Relationship to binary heaps. What operations does it support? How long does each one

take?

• Basic organization of a Fibonacci heap. How does each operation (INSERT, MINIMUM, EX-
TRACTMINIMUM, UNION, DECREASEKEY, DELETE) work?

• What is CONSOLIDATE and how does it work? Role of “marked” vertices, and cascading
cuts.

• Amortized analysis of each operation. What is the potential function?

• Bound of O(lg n) for degree of any node. Why are they called Fibonacci heaps?

Disjoint Sets
• Basic idea of what this kind of data structure is for. What does each operation do? Example

application: connected components of a graph.

• Implementation with linked lists. What pointers are needed for each element? For each set?
How does the weighted union method work, and how does it lead to O(m + n lg n) total
time?

• Implementation as a forest. What pointers are stored for each element? How does Find
work? How does Union work? How long do these things take?

Minimum spanning trees
• What is a spanning tree? What is a minimum spanning tree?

• Why do greedy algorithms like Prim’s and Kruskal’s algorithms work correctly?

• Kruskal’s algorithm: Definition of spanning tree and MST. Basic idea of Kruskal’s algorithm.
How does the disjoint set forest data structure work? How does Kruskal’s detect cycles?

• Prim’s algorithm: Basic idea. How is the priority queue used? What information is stored
for each vertex? How does Prim’s prevent cycles?

Shortest paths on graphs
• Dijkstra’s algorithm: Definition of single-source shortest path problem. Be able to draw the

shortest path tree computed by this algorithm. Relationship to Prim’s algorithm.

• Understand the π and d properties computed for each node by the algorithm.

• Why does Dijkstra’s algorithm fail when there are negative weights? Bellman-Ford algo-
rithm.

csce750 Review Sheet for Final Exam 4 of 5



NP-completeness
• Definition of a decision problem. Converting an optimization problem to a decision prob-

lem. Problems as languages. Deciding a language. Verifying a language. Definitions of P
and NP. Does P=NP?

• Definition of a polynomial time reduction.

• Definition of NP-hard and NP-complete. Cook-Levin theorem.

• Steps for proving a problem NP-complete. Be very careful about the direction of the reduc-
tion.

• Be able to prove that a given language is in P, NP, NP-Complete, or NP-hard.

csce750 Review Sheet for Final Exam 5 of 5


