
csce750 — Analysis of Algorithms
Fall 2020 — Lecture Notes: Fibonacci Heaps

This document contains slides from the lecture, formatted to be suitable for printing or individ-
ual reading, and with some supplemental explanations added. It is intended as a supplement
to, rather than a replacement for, the lectures themselves — you should not expect the notes to
be self-contained or complete on their own.

1 Introduction
CLRS 19

A Fibonacci heap is a specific data structure that supports these operations:

• INSERT(H, k)

• MINIMUM(H)

• EXTRACTMINIMUM(H)

• UNION(H1, H2)

• DECREASEKEY(H,x, k)

• DELETE(H,x)

The primary advantages of a Fibonacci heap are the UNION and DECREASEKEY operations, which
each take Θ(1) amortized time.

2 Binary heaps?

We could implement these operations using a binary heap (which we called a “heap” earlier this
semester).

operation binary heap Fibonacci heap

worst-case amortized
INSERT(H, k) Θ(lg n) Θ(1)

MINIMUM(H) Θ(1) Θ(1)
EXTRACTMINIMUM(H) Θ(lg n) Θ(lgn)

UNION(H1, H2) Θ(n) Θ(1)
DECREASEKEY(H,x, k) Θ(lg n) Θ(1)

DELETE(H,x) Θ(lg n) Θ(lgn)

3 Fibonacci heap organization

A Fibonacci heap is a collection of min-heap ordered trees.

Each node x in each tree has these attributes:

• x.key

• x.parent

csce750 Lecture Notes: Fibonacci Heaps 1 of 5



• x.child (a pointer to any of the children)

• x.left (a pointer to the left sibling)

• x.right (a pointer to the right sibling)

• x.degree

• x.mark1

The heap itself keeps this attribute:

• H.min – a pointer to the root of the tree containing the smallest key

• H.n – the number of keys in the heap

4 Fibonacci heap example

5 Potential function

We’ll analyze the Fibonacci heap data structure using the potential method for amortized analysis.

Φ(H) = t(H) + 2m(H)

• t(H) – number of trees in H

1Has x lost a child since the last time it was made the child of another node?

csce750 Lecture Notes: Fibonacci Heaps 2 of 5



• m(H) – number of marked nodes in H

In an application with multiple heaps that may be merged, use the total potential:

Φ(H1..n) =
n∑

i=1

Φ(Hi)

Is this a valid potential function?

6 Fibonacci heap: Simple operations

INSERT(H, k):

• Create a new 1-node tree, and insert it as a sibling of H.min.

• Actual run time: O(1)

• Amortized run time: ĉi = c+Φ(H ′)− Φ(H) = 1 + 1 = O(1)

UNION(H1, H2):

• Join the two linked lists of trees and select the new minimum.

• Actual run time: O(1)

• Amortized run time: ĉi = ci +Φ(H ′)− (Φ(H1) + Φ(H2)) = 1 + 0 = O(1)

7 Fibonacci heap: ExtractMin

EXTRACTMIN:

• Remove H.min from the list of trees.

• Promote each of the children of H.min to be top-level trees.

• “Consolidate” the heap, ensuring that no two trees have the same degree.

– Use a direct address table, keyed on the degree of the root nodes.

– Scan through the list of trees.

– If we find two trees with the same degree d, link them, making one tree a child of the
other, to create a combined tree with degree d+ 1.

8 Consolidate

csce750 Lecture Notes: Fibonacci Heaps 3 of 5



9 ExtractMin analysis

Let D(n) denote the maximum degree of any node in a Fibonacci heap with n elements. (We’ll
show later that D(n) is O(lg n).)

Amortized run time of EXTRACTMIN:

ĉi = D(n) + t(H)
︸ ︷︷ ︸

actual

+

number of trees
︷ ︸︸ ︷

D(n) + 1+2m(H)
︸ ︷︷ ︸

after

− t(H)− 2m(H)
︸ ︷︷ ︸

before

= O(D(n)) = O(lgn)

10 Fibonacci heap: DecreaseKey

DECREASEKEY(x, k):

• If the new key is greater than the parent’s key, update x.key and return.

• Otherwise, cut x from its parent, and add it as a new tree. Update H.min if needed.

• Use the mark attributes to promote any node that has lost two children since its last link to
be a new tree. Search upward from former the parent of x toward the root for marked nodes.
(“cascading cut”)

Idea: When a node loses its second child, promote it to the root level, to be folded into other trees
on the next EXTRACTMIN.

Reminder: x.mark: Has x lost a child since the last time it was made the child of another node?

11 Fibonacci heap: DecreaseKey analysis

Let c denote the number of calls to CASCADINGCUT. Then c−1 trees were created by the cascading
cuts.

• Actual cost: c

• Change in potential:

– t(H) increases by c.

– m(H) decreases by at least c− 2.

– Φ(H ′)− Φ(H) = c− 2(c− 2) = 4− c

• Amortized cost:
ĉi = c+ 4− c = O(1)

12 Fibonacci heap: Delete

DELETE(x):

• DECREASEKEY(x,−∞)

• EXTRACTMIN(H)

Amortized Analysis: O(1) +O(logn) = O(logn)

csce750 Lecture Notes: Fibonacci Heaps 4 of 5



13 Bounding the maximal degree

We still need to show that, in a Fibonacci heap with n nodes, the maximum degree of any node is
O(logn).

Intuition: The only way to get a large degree is to have many descendants and the only way to
get new descendants is during the consolidate step.

Lemma: Consider a node x with degree k. Let y1, . . . , yk denote the children of x in the order in
which they where added. Then the degree of yi ≥ i− 2.

Proof: When yi was linked to x, x already had y1, . . . , yi−1 as children, so at the time, x.degree ≥

i−1. The consolidate process only links nodes with equal degree, so we also have yi.degree ≥ i−1.
Since then, yi has lost at most one child, so now yi.degree ≥ i− 2.

14 Fibonacci numbers

Recall the Fibonacci sequence: F0 = 0, F1 = 1, Fk = Fk−1 + Fk−2.

Let φ = 1+
√
5

2
.

Lemma: Fk+2 = 1 +
∑k

i=0
Fi (Prove by induction on k.)

Lemma: Fk+2 ≥ φk (Prove by induction on k.)

15 How small can a subtree in a Fibonacci heap be?

Lemma: Let x be a node in a Fibonacci heap with degree k. Then

size(x) ≥ Fk+2

Proof: Let si denote the smallest possible size for a node of degree i. Induction on k. Base cases,
for k = 0 and k = 1, are trivial. Assume the result for 1, . . . , k − 1 to show for k.

sk ≥ 2 +

k∑

i=2

syi.degree

≥ 2 +
k∑

i=2

si−2

≥ 2 +

k∑

i=2

Fi = 1 +

k∑

i=0

Fi

= Fk+2

16 Maximum degree

Finally, if k is the maximum degree in the heap, we have,

n ≥ size(x) ≥ Fk+2 ≥ φk

which implies
logφ n ≥ k ⇒ k = O(logn).

csce750 Lecture Notes: Fibonacci Heaps 5 of 5


