csce750 — Analysis of Algorithms Fall 2020 — Lecture Notes: Fibonacci Heaps

This document contains slides from the lecture, formatted to be suitable for printing or individual reading, and with some supplemental explanations added. It is intended as a supplement to, rather than a replacement for, the lectures themselves — you should not expect the notes to be self-contained or complete on their own.

1 Introduction

A **Fibonacci heap** is a specific data structure that supports these operations:

- INSERT(H, k)
- MINIMUM(H)
- EXTRACTMINIMUM(*H*)
- UNION (H_1, H_2)
- DecreaseKey(H, x, k)
- Delete(H, x)

The primary advantages of a Fibonacci heap are the UNION and DECREASEKEY operations, which each take $\Theta(1)$ amortized time.

2 Binary heaps?

We *could* implement these operations using a binary heap (which we called a "heap" earlier this semester).

operation	binary heap	Fibonacci heap
	worst-case	amortized
INSERT(H,k)	$\Theta(\lg n)$	$\Theta(1)$
MINIMUM(H)	$\Theta(1)$	$\Theta(1)$
EXTRACTMINIMUM (H)	$\Theta(\lg n)$	$\Theta(\lg n)$
$UNION(H_1, H_2)$	$\Theta(n)$	$\Theta(1)$
DECREASEKEY(H, x, k)	$\Theta(\lg n)$	$\Theta(1)$
Delete(H, x)	$\Theta(\lg n)$	$\Theta(\lg n)$

3 Fibonacci heap organization

A Fibonacci heap is a collection of min-heap ordered trees.

Each node x in each tree has these attributes:

- x.key
- x.parent

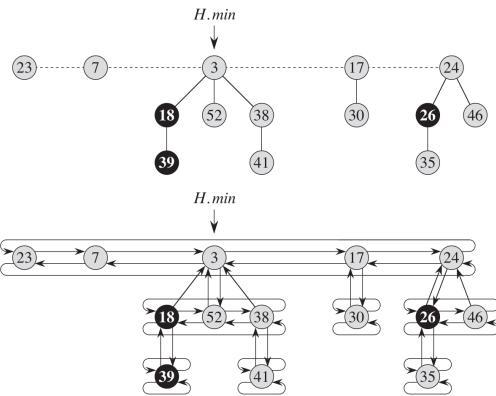
CLRS 19

- *x*.child (a pointer to *any* of the children)
- *x*.left (a pointer to the left sibling)
- *x*.right (a pointer to the right sibling)
- *x*.degree
- x.mark¹

The heap itself keeps this attribute:

- *H*.min a pointer to the root of the tree containing the smallest key
- *H*.*n* the number of keys in the heap

4 Fibonacci heap example



5 Potential function

We'll analyze the Fibonacci heap data structure using the potential method for amortized analysis.

$$\Phi(H) = t(H) + 2m(H)$$

• t(H) – number of trees in H

¹Has x lost a child since the last time it was made the child of another node?

• m(H) – number of marked nodes in H

In an application with multiple heaps that may be merged, use the total potential:

$$\Phi(H_{1..n}) = \sum_{i=1}^{n} \Phi(H_i)$$

Is this a valid potential function?

6 Fibonacci heap: Simple operations

INSERT(H, k):

- Create a new 1-node tree, and insert it as a sibling of *H*.min.
- Actual run time: O(1)
- Amortized run time: $\hat{c}_i = c + \Phi(H') \Phi(H) = 1 + 1 = O(1)$

UNION (H_1, H_2) :

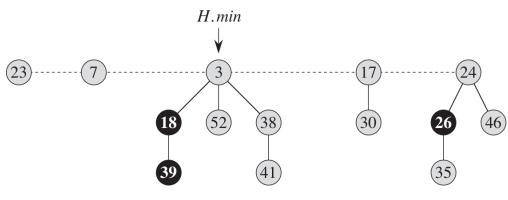
- Join the two linked lists of trees and select the new minimum.
- Actual run time: O(1)
- Amortized run time: $\hat{c}_i = c_i + \Phi(H') (\Phi(H_1) + \Phi(H_2)) = 1 + 0 = O(1)$

7 Fibonacci heap: ExtractMin

EXTRACTMIN:

- Remove *H*.min from the list of trees.
- Promote each of the children of *H*.min to be top-level trees.
- "Consolidate" the heap, ensuring that no two trees have the same degree.
 - Use a direct address table, keyed on the degree of the root nodes.
 - Scan through the list of trees.
 - If we find two trees with the same degree d, **link** them, making one tree a child of the other, to create a combined tree with degree d + 1.

8 Consolidate



9 ExtractMin analysis

Let D(n) denote the maximum degree of any node in a Fibonacci heap with n elements. (We'll show later that D(n) is $O(\lg n)$.)

Amortized run time of EXTRACTMIN:

$$\hat{c}_{i} = \underbrace{D(n) + t(H)}_{\text{actual}} + \underbrace{\underbrace{D(n) + 1}_{\text{after}} + 2m(H)}_{\text{after}} - \underbrace{t(H) - 2m(H)}_{\text{before}}$$
$$= O(D(n)) = O(\lg n)$$

10 Fibonacci heap: DecreaseKey

DECREASEKEY(x, k):

- If the new key is greater than the parent's key, update *x* key and return.
- Otherwise, **cut** *x* from its parent, and add it as a new tree. Update *H*.min if needed.
- Use the mark attributes to promote any node that has lost two children since its last link to be a new tree. Search upward from former the parent of *x* toward the root for marked nodes. ("cascading cut")

Idea: When a node loses its second child, promote it to the root level, to be folded into other trees on the next EXTRACTMIN.

Reminder: *x*.mark: Has *x* lost a child since the last time it was made the child of another node?

11 Fibonacci heap: DecreaseKey analysis

Let c denote the number of calls to CASCADINGCUT. Then c-1 trees were created by the cascading cuts.

- Actual cost: c
- Change in potential:
 - t(H) increases by c.
 - m(H) decreases by at least c 2.
 - $\Phi(H') \Phi(H) = c 2(c 2) = 4 c$
- Amortized cost:

$$\hat{c}_i = c + 4 - c = O(1)$$

12 Fibonacci heap: Delete

Delete(x):

- DecreaseKey $(x, -\infty)$
- EXTRACTMIN(*H*)

Amortized Analysis: $O(1) + O(\log n) = O(\log n)$

13 Bounding the maximal degree

We still need to show that, in a Fibonacci heap with n nodes, the maximum degree of any node is $O(\log n)$.

Intuition: The only way to get a large degree is to have many descendants and the only way to get new descendants is during the consolidate step.

Lemma: Consider a node *x* with degree *k*. Let y_1, \ldots, y_k denote the children of *x* in the order in which they where added. Then the degree of $y_i \ge i - 2$.

Proof: When y_i was linked to x, x already had y_1, \ldots, y_{i-1} as children, so at the time, x.degree $\geq i-1$. The consolidate process only links nodes with equal degree, so we also have y_i .degree $\geq i-1$. Since then, y_i has lost at most one child, so now y_i .degree $\geq i-2$.

14 Fibonacci numbers

Recall the **Fibonacci sequence**: $F_0 = 0$, $F_1 = 1$, $F_k = F_{k-1} + F_{k-2}$.

Let
$$\phi = \frac{1+\sqrt{5}}{2}$$
.

Lemma: $F_{k+2} = 1 + \sum_{i=0}^{k} F_i$ (Prove by induction on *k*.)

Lemma: $F_{k+2} \ge \phi^k$ (Prove by induction on *k*.)

15 How small can a subtree in a Fibonacci heap be?

Lemma: Let *x* be a node in a Fibonacci heap with degree *k*. Then

$$\operatorname{size}(x) \ge F_{k+2}$$

Proof: Let s_i denote the smallest possible size for a node of degree *i*. Induction on *k*. Base cases, for k = 0 and k = 1, are trivial. Assume the result for $1, \ldots, k - 1$ to show for *k*.

$$s_k \geq 2 + \sum_{i=2}^k s_{y_i.\text{degree}}$$

$$\geq 2 + \sum_{i=2}^k s_{i-2}$$

$$\geq 2 + \sum_{i=2}^k F_i = 1 + \sum_{i=0}^k F_i$$

$$= F_{k+2}$$

16 Maximum degree

Finally, if *k* is the maximum degree in the heap, we have,

$$n \ge \operatorname{size}(x) \ge F_{k+2} \ge \phi^k$$

which implies

$$\log_{\phi} n \ge k \qquad \Rightarrow \qquad k = O(\log n).$$