Fix an alphabet Σ. For $x, w \in \Sigma^*$ we let $x \leq w$ denote the condition that x is a subsequence of w. For a language $L \subseteq \Sigma^*$, define

$$\text{SUBSEQ}(L) := \{ x \in \Sigma^* \mid (\exists w \in L) x \leq w \}.$$

Theorem 1. $\text{SUBSEQ}(L)$ is regular for any $L \subseteq \Sigma^*$.

Clearly, $\text{SUBSEQ}(\text{SUBSEQ}(L)) = \text{SUBSEQ}(L)$ for any L, since \leq is transitive. We’ll say that L is \leq-closed if $L = \text{SUBSEQ}(L)$. So Theorem 1 is equivalent to the statement that a language L is regular if L is \leq-closed. The remainder of this note is to prove Theorem 1.

1 Preliminaries

We let $\mathbb{N} = \omega = \{ 0, 1, 2, \ldots \}$ be the set of natural numbers. We will assume WLOG that all symbols are elements of \mathbb{N} and that all alphabets are finite, nonempty subsets of \mathbb{N}. We can also assume WLOG that all languages are nonempty. We extend the star notation to \mathbb{N}, letting \mathbb{N}^* be the set of all finite strings over \mathbb{N}.

For a finite set X we let $|X|$ denote the cardinality of X.

Definition 2. For any alphabet $\Sigma = \{ n_1 < \cdots < n_k \}$, we define the canonical string for Σ,

$$\sigma_\Sigma := n_1 \cdots n_k,$$

the concatenation of all symbols of Σ in increasing order. If $w \in \Sigma^*$, we define the number

$$\ell_\Sigma(w) := \max\{ n \in \mathbb{N} \mid (\sigma_\Sigma)^n \leq w \}.$$

Observation 3. $(\sigma_\Sigma)^n$ has any string in Σ^* of length at most n as a subsequence. Thus for any string w and $x \in \Sigma^*$, if $|x| \leq \ell_\Sigma(w)$, then $x \leq w$.

Our regular expressions (regexps) are built from the atomic regexps ε and $a \in \mathbb{N}$ using union, concatenation, and Kleene closure in the standard way (we omit \emptyset as a regexp since all our languages are nonempty). For regexp r, we let $L(r)$ denote the language of r. We consider regexps as syntactic objects, distinct from their corresponding languages. So for regexps r and s, by saying that $r = s$ we mean that r and s are syntactically identical, not just that $L(r) = L(s)$. For any alphabet $\Sigma = \{ n_1, \ldots, n_k \} \subseteq \mathbb{N}$, we let Σ also denote the regexp $n_1 \cup \cdots \cup n_k$ as usual, and in keeping with our view of regexps as syntactic objects, we will heretofore be more precise and say, e.g., “$L \subseteq L(\Sigma^*)$” rather than “$L \subseteq \Sigma^*$.”

Definition 4. A regexp r is primitive syntactically \leq-closed (PSC) if r is one of the following two types:

Bounded: $r = a \cup \varepsilon$ for some $a \in \mathbb{N}$;

Unbounded: $r = \Sigma^*$ for some alphabet Σ.

1
The rank of such an \(r \) is defined as
\[
\text{rank}(r) := \begin{cases}
0 & \text{if } r \text{ is bounded,} \\
|\Sigma| & \text{if } r = \Sigma^*.
\end{cases}
\]

Definition 5. A regexp \(R \) is syntactically \(\leq \)-closed (SC) if \(R = r_1 \cdots r_k \), where \(k \geq 0 \) and each \(r_i \) is PSC. For the \(k = 0 \) case, we define \(R := \varepsilon \) by convention. If \(w \) is a string, we define an \(R \)-partition of \(w \) to be a list \(\langle w_1, \ldots, w_k \rangle \) of strings such that \(w_1 \cdots w_k = w \) and \(w_i \in L(r_i) \) for each \(1 \leq i \leq k \). We call \(w_i \) the \(i \)th component of the \(R \)-partition.

Observation 6. If regexp \(R \) is SC, then \(L(R) \) is \(\leq \)-closed.

Observation 7. For SC \(R \) and string \(w \), \(w \in L(R) \) iff some \(R \)-partition of \(w \) exists.

Definition 8. Let \(r = \Sigma^* \) be an unbounded PSC regexp. We define \(\text{pref}(r) \), the **primitive refinement** of \(r \), as follows: if \(\Sigma = \{ a \} \) for some \(a \in \mathbb{N} \), then let \(\text{pref}(r) \) be the bounded regexp \(a \cup \varepsilon \); otherwise, if \(\Sigma = \{ n_1 < n_2 < \cdots < n_k \} \) for some \(k \geq 2 \), then we let
\[
\text{pref}(r) := (\Sigma - \{ n_1 \})^*(\Sigma - \{ n_2 \})^* \cdots (\Sigma - \{ n_k \})^*.
\]

To use the definition above, note that \(\text{pref}(r) \) is SC but not PSC. Also note that \(L((\text{pref}(r))^n) = L(r) \). This leads to the following definition, analogous to Definition 2:

Definition 9. Let \(r \) be an unbounded PSC regexp, and let \(w \in L(r) \) be a string. Define
\[
m_r(w) := \min\{ n \in \mathbb{N} \mid w \in L((\text{pref}(r))^n) \}.
\]

There is a nice connection between Definitions 2 and 9, given by the following Lemma:

Lemma 10. For any unbounded PSC regexp \(r = \Sigma^* \) and any string \(w \in L(r) \),
\[
m_r(w) = \begin{cases}
\ell_\Sigma(w) & \text{if } |\Sigma| = 1, \\
\ell_\Sigma(w) + 1 & \text{if } |\Sigma| \geq 2.
\end{cases}
\]

Proof. First, if \(|\Sigma| = 1 \), then \(\text{pref}(r) = a \cup \varepsilon \) and \(\sigma_\Sigma = a \), where \(\Sigma = \{ a \} \). Then clearly,
\[
m_r(w) = |w| = \ell_\Sigma(w).
\]

Second, suppose that \(\Sigma = \{ n_1 < \cdots < n_k \} \) with \(k \geq 2 \), so that \(\sigma_\Sigma = n_1 \cdots n_k \) and \(\text{pref}(r) = \Sigma_1^* \cdots \Sigma_k^* \) from (1), where we set \(\Sigma_i = \Sigma - \{ n_i \} \) for \(1 \leq i \leq k \). Let \(m = m_r(w) \), and let \(P = \langle w_1,1, \ldots, w_{1,k}, w_2,1, \ldots, w_{2,k}, \ldots, w_{m,1}, \ldots, w_{m,k} \rangle \) be any \((\text{pref}(r))^m \)-partition of \(w \) (at least one such partition exists by Observation 7). We have that each \(w_{i,j} \in L(\Sigma_j^*) \). If \((\sigma_\Sigma)^t \leq w \) for some \(t \geq 0 \), then there is some monotone nondecreasing map \(p : \{ 1, \ldots, \ell k \} \rightarrow \{ 1, \ldots, mk \} \) such that the \(t \)th symbol of \((\sigma_\Sigma)^t \) occurs in the \(p(t) \)th component of \(P \). Now we must have \(p(t) \neq t \) for all \(1 \leq t \leq \ell k \); writing \(t = qk + s \) for some \(1 \leq s \leq k \), we have that the \(t \)th symbol of \((\sigma_\Sigma)^t \) is \(n_s \), but the \(t \)th component of \(P \) is \(w_{q+1,s} \in L(\Sigma_s^*) \), and \(n_s \notin \Sigma_s \). Thus the \(t \)th symbol in \((\sigma_\Sigma)^t \) does not occur in the \(t \)th
component of P, and so $t \neq p(t)$. Now it follows from the monotonicity of p that $p(t) > t$ for all t. In particular, $\ell_k < p(\ell_k) \leq mk$, and so $\ell < m$. This shows that $n_r(w) \geq \ell(w) + 1$.

Let m be as in the previous paragraph. We build a particular $(\text{pref}(r))^m$-partition $P_{\text{greedy}} = \langle w_1, \ldots, w_{1,k}, w_{2,1}, \ldots, w_{2,k}, \ldots, w_{m,1}, \ldots, w_{m,k} \rangle$ of w by the greedy algorithm below. In the algorithm, for integers $1 \leq i \leq m$ and $1 \leq j \leq k$ we let

$$(i, j)' = \begin{cases} (i, j + 1) & \text{if } j < k, \\ (i + 1, 1) & \text{otherwise}. \end{cases}$$

This is the successor operation in the lexicographical ordering on the pairs (i, j) with $1 \leq j \leq k$: $(i_1, j_1) < (i_2, j_2)$ if either $i_1 < i_2$ or $i_1 = i_2$ and $j_1 < j_2$.

$$(i, j) \leftarrow (1, 1)$$
While $i \leq m$

Let $w_{i,j}$ be the longest prefix of w in Σ_j.

Remove prefix $w_{i,j}$ from w.

$$(i, j) \leftarrow (i, j)'$$
End while.

Since some $(\text{pref}(r))^m$-partition of w exists, this algorithm will clearly also produce a $(\text{pref}(r))^m$-partition of w, i.e., the while-loop terminates with $w = \varepsilon$. Furthermore, w does not become ε until the end of the $(m,1)$-iteration of the loop at the earliest; otherwise, the algorithm would produce a $(\text{pref}(r))^{m-1}$-partition of w, contradicting the minimality of m. Finally, for all (i, j) lexicographically between $(1, 1)$ and $(m-1, k)$ inclusive, letting $(i', j') = (i, j)'$, we have that $w_{i', j'}$ starts with n_j. This follows immediately from the greediness (maximum length) of the choice of $w_{i,j}$. Therefore, we have σ_Σ is a subsequence of each of the strings $(w_{1,1} \cdots w_{1,k}), (w_{2,1} \cdots w_{2,k}), \ldots, (w_{m-1,1} \cdots w_{m-1,k})$, and so $(\sigma_\Sigma)^{m-1} \preceq w$, which proves that $n_r(w) \leq \ell(w) + 1$.

Definition 11. Let $R = r_1 \cdots r_k$ and S be two SC regexps, where each r_i is PSC. We say that S is a one-step refinement of R if S results from either

- removing some bounded r_i from R, or
- replacing some unbounded r_i in R by $(\text{pref}(r_i))^n$ for some $n \in \mathbb{N}$.

We say that S is a refinement of R (and write $S < R$) if S results from R through a sequence of one or more one-step refinements.

One may note that if $S < R$, then $L(S) \subseteq L(R)$, although it is not important to the main proof.

Lemma 12. The relation $<$ of Definition 11 is a well-founded partial order on the set of SC regexps (of height at most ω^ω).
Proof. Let $R = r_1 \cdots r_k$ be an SC regexp, and let $e_1 \geq e_2 \geq \cdots \geq e_k$ be the ranks of all the r_i, arranged in nonincreasing order, counting duplicates. Define the ordinal

$$\text{ord}(R) := \omega^{e_1} + \omega^{e_2} + \cdots + \omega^{e_k},$$

which is in Cantor normal form and always less than ω^{e_i}. If $R = \varepsilon$, then $\text{ord}(R) := 0$ by convention. Let S be an SC regexp. Then it is clear that $S < R$ implies $\text{ord}(S) < \text{ord}(R)$, because the ord of any one-step refinement of R results from either removing some addend $\omega^0 = 1$ or replacing some addend ω^e for some positive e (the rightmost with exponent e) in the ordinal sum of $\text{ord}(R)$ with the ordinal $\omega^{e-1} \cdot n$, for some $n < \omega$, resulting in a strictly smaller ordinal. From this the lemma follows. \qed

2 Main Proofs

The following lemma is key to proving Theorem 1.

Lemma 13 (Key Lemma). Let $R = r_1 \cdots r_k$ be a SC regexp where at least one of the r_i is unbounded. Suppose $L \subseteq L(R)$ is \preceq-closed. Then either

1. $L = L(R)$ or

2. there exist refinements $S_1, \ldots, S_k < R$ such that $L \subseteq \bigcup_{i=1}^k L(S_i)$.

Before proving Lemma 13, we see how it is used to prove Theorem 1.

Proof of Theorem 1. Let $L \subseteq L(\Sigma^*)$ be \preceq-closed. We prove by induction on the refinement relation that: for any SC regexp R, if $L \subseteq L(R)$ then L is regular. The theorem follows by setting $R = \Sigma^*$. Fix $R = r_1 \cdots r_k$, and suppose that $L \subseteq L(R)$. If all of the r_i are bounded, then $L(R)$ is finite and hence L is regular. Now assume that at least one r_i is unbounded and that the statement holds for all $S < R$. If $L = L(R)$, then L is certainly regular, since R is a regexp. If $L \neq L(R)$, then by Lemma 13 there are $S_1, \ldots, S_k < R$ with $L \subseteq \bigcup_{i=1}^k L(S_i)$. Each $L \cap L(S_i)$ is \preceq-closed (being the intersection of two \preceq-closed languages) and hence regular by the inductive hypothesis. But then,

$$L = L \cap \bigcup_{i=1}^k L(S_i) = \bigcup_{i=1}^k (L \cap L(S_i)),$$

and so L is regular. \qed

Proof of Lemma 13. Fix R and L as in the statement of the lemma. Whether Case 1 or Case 2 holds hinges on whether or not a certain quantity associated with each string in $L(R)$ is unbounded when taken over all strings in L.

For any string $w \in L(R)$ and any R-partition $P = \langle w_1, \ldots, w_k \rangle$ of w, define

$$M_P^{bd}(w) := \min_{i: r_i \text{ is bounded}} |w_i|,$$

for any string $w \in L(R)$ and any R-partition $P = \langle w_1, \ldots, w_k \rangle$ of w, define

$$M_P^{bd}(w) := \min_{i: r_i \text{ is bounded}} |w_i|,$$
and define
\[M_n^\text{unbd}(w) := \min_{i: \text{r}_i \text{ is unbounded}} m_{r_i}(w_i). \] (3)

In (2), for any bounded \(r_i \), we have \(w_i \in L(r_i) \) and thus \(|w_i| \in \{0, 1\} \). If there is no bounded \(r_i \), we'll take the minimum to be 1 by default.

Now define
\[M(w) := \max_{P: P \text{ is an } R\text{-partition of } w} M_P^\text{bd}(w) \cdot M_P^\text{unbd}(w). \] (4)

We will show that if
\[\limsup_{w \in L} M(w) = \infty, \] (5)

then Case 1 of the lemma holds. Otherwise, Case 2 holds.

Suppose that (5) holds. Let \(x \in L(R) \) be arbitrary. Then there is a \(w \in L \) such that \(|x| \leq M(w) \). For this \(w \) there is an \(R\)-partition \(P = \langle w_1, \ldots, w_k \rangle \) of \(w \) such that \(M_P^\text{bd}(w) = 1 \) and \(M_P^\text{unbd}(w) > |x| \). Let \(\langle x_1, \ldots, x_k \rangle \) be some \(R\)-partition of \(x \). For all \(1 \leq i \leq k \), we then have

- \(|x_i| \leq 1 = |w_i| \) if \(r_i \) is bounded, and
- \(|x_i| \leq |x| \leq m_{r_i}(w_i) - 1 \leq \ell_r(w_i) \) if \(r_i = \Gamma^* \) for some alphabet \(\Gamma \).

(The last inequality of the second item follows from Lemma 10). In either case, we have \(x_i \preceq w_i \) (the second case following from Observation 3), and thus \(x \preceq w \). Since \(w \in L \) and \(L \) is \(\preceq \)-closed, we have \(x \in L \). Since \(x \in L(R) \) was arbitrary, this proves that \(L = L(R) \), which is Case 1 of the lemma.

Now suppose that (5) does not hold. This means there is a finite bound \(B \) such that \(M(w) \leq B \) for all \(w \in L \). So for any \(w \in L \) and any \(R\)-partition \(P = \langle w_1, \ldots, w_k \rangle \) of \(w \), either \(M_P^\text{bd}(w) = 0 \) or \(M_P^\text{unbd}(w) \leq B \). Suppose \(M_P^\text{bd}(w) = 0 \). Then \(w_i = \varepsilon \) for some \(i \) where \(r_i \) is bounded. Let \(S_i \) be the one-step refinement of \(R \) obtained by removing \(r_i \) from \(R \). Then clearly, \(w \in L(S_i) \). Now suppose \(M_P^\text{unbd}(w) \leq B \), so that there is some unbounded \(r_j \) such that \(m_{r_j}(w_j) \leq B \). This means that \(w_j \in L((\text{pref}(r_j))^B) \) by Definition 9. Let \(S_j \) be the one-step refinement obtained from \(R \) by replacing \(r_j \) with \((\text{pref}(r_j))^B \). Then clearly again, \(w \in L(S_j) \). In general, we define, for all \(1 \leq i \leq k \),

\[S_i = \begin{cases} r_1 \cdots r_{i-1} r_{i+1} \cdots r_k & \text{if } r_i \text{ is bounded}, \\ r_1 \cdots r_{i-1} (\text{pref}(r_i))^B r_{i+1} \cdots r_k & \text{otherwise}. \end{cases} \]

We have shown that there is always an \(i \) for which \(w \in L(S_i) \). Since \(w \in L \) was arbitrary, Case 2 of the lemma holds. \(\square \)