1. (10 points) Fill in the blanks in the following proof via the Pumping Lemma that the language $L := \{0^m1^n \mid 0 \leq m \leq n \leq 2m\}$ is not regular:

Given $p > 0$,
let $s := \underline{0^p1^p}$. Clearly, $s \in L$ and $|s| \geq p$.
Given any x, y, z such that $s = xyz$, $|y| > 0$, and $|xy| \leq p$,
let $i := \underline{2}$. Then $xy^iz \notin L$, because $\underline{[Explain briefly.] }$.

Answer: $s := 0^p1^p$ and $i := 2$. Given our choice of s, we must have $y = 0^k$ for some $k > 0$, so $xy^2z = 0^{p+k}1^p \notin L$, because $p + k > p$.

There are other correct answers, e.g., $s := 0^p1^{2p}$ and $i := p + 2$ (or bigger).

2. (20 points total)

(a) (10 points) Describe formally with a transition diagram a Turing machine M with input alphabet $\Sigma := \{0, 1, \#\}$ that makes a “sorted” copy of a binary string. That is, on any input of the form “$w#$” where $w \in \{0, 1\}^*$, your machine M eventually halts, leaving $w#x$ on the left end of its tape (and blanks everywhere else), where $x \in \{0, 1\}^*$ has the same number of 0’s and 1’s as w, but all the 0’s in x precede all the 1’s in x. For example, we have the following nonblank tape contents:

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\underline{010010}$#</td>
<td>$\underline{010010}$#000011</td>
</tr>
<tr>
<td>$\underline{011101011}$#</td>
<td>$\underline{011101011}$#000111111</td>
</tr>
<tr>
<td>$#$</td>
<td>$#$</td>
</tr>
</tbody>
</table>

Please note that you can assume the input is $w#$ for some binary string w, and so the separator symbol $\#$ is already on the tape when the computation begins. If the input is not of this form, then M may behave arbitrarily.

(b) (10 points) Give an implementation-level description of M.

Answer:

(a) Here is one possible M; the tape alphabet is $\{0, 1, $, $\#, B\}$, where B is the blank symbol:
(b) M first (from left to right) marks each 0 in w with x, then append 0 to the end (and restoring the x back to 0. M then does the same for the 1’s in w.

3. (15 points) Assume some fixed alphabet Σ containing the symbol a. Give a high-level description of a decision procedure for the following language:

$$L := \{ \langle R \rangle \mid R \text{ is a regex and } a^* \subseteq R \}.$$

Answer: “On input $\langle R \rangle$, where R is a regex:

(a) Convert R to an equivalent DFA D.
(b) Let n be the number of states of D.
(c) Run D on input a^i for all $0 \leq i \leq n$.
(d) If D accepts all of these strings, then accept; else reject.”

This algorithm works because the path obtained by following a-transitions from the start state must loop back on itself after at most n transitions.

4. (10 points) Let

$$L := \{ \langle M \rangle \mid (\exists n > 0)[M \text{ accepts exactly half the strings of length } n] \}.$$

Show that $A_{TM} \leq_m L$, and thus L is undecidable. (Do not appeal to Rice’s theorem, which was not covered in class.)
Answer: Here is one possible solution: Fix some TM M_0 that does not accept any strings (and so $\langle M_0 \rangle \notin L$). Then let $f : \Sigma^* \to \Sigma^*$ be defined by the following algorithm: $f :=$ “On input string s:

(a) If s is not of the form $\langle M, w \rangle$ for some TM M and some string w over M’s input alphabet, then output $\langle M_0 \rangle$ and halt.
(b) Otherwise, $s = \langle M, w \rangle$ as above. Construct a TM R with input alphabet $\{0, 1\}$ as follows:
 $R :=$ ‘On input string $x \in \{0, 1\}^*$:
 i. If $x = 0$, then run M on input w.
 ii. Otherwise, reject.’
(c) Output $\langle R \rangle$ and halt.”

Evidently, f is computable. Given a TM M and string w, letting R be such that $\langle R \rangle = f(\langle M, w \rangle)$, we see that R accepts at most one string: 0, one of the two strings of length one (the other is 1). R accepts 0 if and only if M accepts w, and so:

- $\langle M, w \rangle \in A_{TM}$ implies M accepts w, which implies R accepts exactly half the strings of length 1, which implies $\langle R \rangle \in L$.
- $\langle M, w \rangle \notin A_{TM}$ implies M does not accept w, which implies R does not accept any strings, which implies $\langle R \rangle \notin L$.

Finally, if string s is not of the form $\langle M, w \rangle$ as above, then $s \notin A_{TM}$ and $f(s) = \langle M_0 \rangle \notin L$.

In any case, we always have $s \in A_{TM} \iff f(s) \in L$, and so $A_{TM} \leq_m L$ via f.

5. (15 points) Show that every Turing-recognizable language L is enumerated by an enumerator that prints every string in L exactly twice.

Answer: Given an enumerator E for L, we modify it to the following enumerator E' that behaves as required:

(a) Initialize a list of strings D to be empty.
(b) Run E.
(c) Whenever E prints a string w that is not on the list D,
 i. Print w.
 ii. Print w again.
 iii. Add w to the list D.

E' maintains a list D of all strings printed by E so far. Whenever E first prints a string w, it is printed twice by E' and added to the list. Having w on the list means that E' will not print w again, no matter how many subsequent times E prints w.

3