Answers to the CSCE 551 Final Exam, April 30, 2008

1. (15 points) Use the Pumping Lemma to show that the language

\[L = \{ x \in \{0, 1\}^* \mid \text{the number of 0s and 1s in } x \text{ differ (in either direction) by at most } 2008 \} \]

is not regular.

Answer: Given \(p > 0 \), let \(s = 0^p 1^{p+2008} \). Clearly, \(|s| = 2p + 2008 \geq p \) and \(s \in L \).

If \(x, y, z \) are such that \(xyz = s \), \(|xy| \leq p \), and \(|y| > 0 \), then we must have \(y = 0^m \) for some \(m > 0 \). Letting \(i = 0 \), we remove \(m \) zeros to get

\[xy^i z = x y^0 z = xz = 0^{p-m} 1^{p+2008} \notin L. \]

Thus by the Pumping Lemma, \(L \) is not regular. (There are many other workable choices of \(s \) and \(i \).)

2. (10 points) The following DFA is not minimum:

![DFA Diagram](image)

Using any method you like, find the minimum equivalent DFA. (Draw its transition diagram.)

Answer: States \(A \) and \(C \) are the only pair of indistinguishable states. Combining them, we get the minimum DFA:
3. (15 points) Give an m-reduction from A_{TM} to the language

$$B = \{\langle R \rangle \mid R \text{ is a TM that accepts a string } w \text{ iff } |w| = 2008 \}.$$

Answer: Let

$$f = \text{“On input } \langle M, w \rangle \text{ where } M \text{ is a TM and } w \text{ is a string:}$$

(a) Let $R = \text{‘On input } x:\$

(i) If $|x| \neq 2008$ then reject

(ii) Simulate M on w (and do what M does)’

(b) Output $\langle R \rangle$”

Then f m-reduces A_{TM} to B.

4. (25 points total) Fix some enumerator E. Let A be the language of all strings w such that

- E prints w at least once, and
- w is at least as long as any string that E prints before it first prints w.

Show:

(a) (15 points) A is decidable.

(b) (10 points) If E enumerates an infinite language, then A is infinite.

[This proves that every infinite Turing recognizable set has an infinite decidable subset.]
Let L be the language enumerated by E. It follows from the definition that $A \subseteq L$.

(a) There are two cases:

L is finite: Then A is also finite. Since every finite language is decidable (regular even), then A is decidable.

L is infinite: Let D implement the following algorithm:

"On input w:
 i. Run E until it either prints w or it prints some string longer than w, whichever comes first
 ii. If E prints w, then accept
 iii. If E prints a string longer than w, then reject"

Since E enumerates an infinite language (by assumption), it must print strings that are arbitrarily long. Thus on any input w, Step (i) will eventually complete, and so D is a decider. It is also straightforward to see that $w \in A$ iff D accepts w. Thus D decides A, and so A is decidable.

[Note that in general we cannot compute, given $\langle E \rangle$, which case holds—finite or infinite. This question is undecidable, but it does not affect the decidability of A.]

(b) Assume that L is infinite. For any length $n \geq 0$, there are only finitely many strings of length $\leq n$, and so E must eventually print a string longer than n. The first such string printed by E is in A (clearly). So A contains a string longer than n. Since n is arbitrary, A must contain arbitrarily long strings, so A must be infinite.

5. (10 points) Prove that if TQBF \in NP, then NP $=$ PSPACE.

Answer: We already know that NP \subseteq PSPACE (this was proven in class), so it suffices to show that PSPACE \subseteq NP. Let A be any language in PSPACE. We know that TQBF is PSPACE-complete, so in particular, TQBF is PSPACE-hard, which means $A \leq^p_m$ TQBF because $A \in$ PSPACE. Now suppose that TQBF \in NP. We proved in class that for any languages C and D, if $C \leq^p_m D$ and $D \in$ NP, then $C \in$ NP. In this case, we have $A \leq^p_m$ TQBF and TQBF \in NP (by assumption), and thus $A \in$ NP. Since A was any PSPACE language, this shows that PSPACE \subseteq NP.

6. (15 points) Let

$$L = \{ \langle M, w \rangle \mid M \text{ is a DFA that accepts } w^n \text{ for all } n \geq 0 \}.$$

Show that $L \in P$ by giving a polynomial-time decision procedure for L. (A high-level algorithm will suffice.)
Answer: Let

\[N = \text{"On input } \langle M, w \rangle \text{ where } M \text{ is a DFA and } w \text{ is a string:} \]

(a) Let \(n \) be the number of states of \(M \)
(b) For \(i := 0 \) to \(n - 1 \) do
 i. Run \(M \) on input \(w^i \)
 ii. If \(M \) rejects \(w^i \), then reject
(c) Accept

Why this works: Clearly, \(N \) runs in polynomial time (quartic time, actually, although this is not optimal). It is also clear that if \(\langle M, w \rangle \in L \) then \(N \) accepts \(\langle M, w \rangle \).

But the converse is also true: Suppose \(M = (Q, \Sigma, \delta, q_0, F) \), where \(|Q| = n \). Let \(q_0, q_1, q_2, \ldots \) be the sequence of states that \(M \) enters after reading inputs \(w^0, w^1, w^2, \ldots \), respectively. That is, let \(q_i = \delta(q_0, w^i) \) for all \(i \geq 0 \), and note that \(q_{i+1} = \delta(q_i, w) \).

By its construction, \(N \) accepts \(\langle M, w \rangle \) if and only if \(\{q_0, q_1, \ldots, q_{n-1}\} \subseteq F \). Since \(M \) has only \(n \) states, by the Pigeon Hole Principle, there must be some \(0 \leq i < j \leq n \) such that \(q_i = q_j \) (this is similar to the proof of the Pumping Lemma). But then, \(q_{i+1} = q_{j+1}, q_{i+2} = q_{j+2}, \) etc. That is, we have a loop, which implies that all states in the sequence are in the set \(\{q_0, q_1, \ldots, q_{n-1}\} \). Thus \(N \) only needs to test whether these states are all in \(F \).

7. (20 points total) Let \(\varphi \) be the quantified Boolean formula

\[(\exists x_1)(\forall x_2)(\exists x_3)[(x_1 \lor x_3) \land (x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2})]. \]

(a) (15 points) Give the instance \(\langle G, s \rangle \) of GG that \(\varphi \) maps to via the p-m-reduction of TQBF to GG described either in the book or in class. (Draw the digraph \(G \) and label the start vertex \(s \).)

Answer:
(b) (5 points) Is φ true?

Answer: No, φ is false. For any truth value Alice picks for x_1, Bob picks the same truth value for x_2, which guarantees that at least one clause is violated, regardless of Alice’s choice of x_3. This shows that Bob has a winning strategy, not Alice.