Answers to the CSCE 551 Final Exam, April 30, 2008

1. (15 points) Use the Pumping Lemma to show that the language
$L=\left\{x \in\{0,1\}^{*} \mid\right.$ the number of 0 s and 1 s in x differ (in either direction) by at most 2008$\}$ is not regular.

Answer: Given $p>0$, let $s=0^{p} 1^{p+2008}$. Clearly, $|s|=2 p+2008 \geq p$ and $s \in L$. If x, y, z are such that $x y z=s,|x y| \leq p$, and $|y|>0$, then we must have $y=0^{m}$ for some $m>0$. Letting $i=0$, we remove m zeros to get

$$
x y^{i} z=x y^{0} z=x z=0^{p-m} 1^{p+2008} \notin L .
$$

Thus by the Pumping Lemma, L is not regular. (There are many other workable choices of s and i.)
2. (10 points) The following DFA is not minimum:

Using any method you like, find the minimum equivalent DFA. (Draw its transition diagram.)

Answer: States A and C are the only pair of indistinguishable states. Combining them, we get the minimum DFA:

3. (15 points) Give an m-reduction from A_{TM} to the language

$$
B=\{\langle R\rangle \mid R \text { is a TM that accepts a string } w \text { iff }|w|=2008\} .
$$

Answer: Let
$f=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:
(a) Let $R=$ 'On input x :
i. If $|x| \neq 2008$ then reject
ii. Simulate M on w (and do what M does) ${ }^{\prime}$
(b) Output $\langle R\rangle$ "

Then f m-reduces A_{TM} to B.
4. (25 points total) Fix some enumerator E. Let A be the language of all strings w such that

- E prints w at least once, and
- w is at least as long as any string that E prints before it first prints w.

Show:
(a) (15 points) A is decidable.
(b) (10 points) If E enumerates an infinite language, then A is infinite.
[This proves that every infinite Turing recognizable set has an infinite decidable subset.]

Answer: Let L be the language enumerated by E. It follows from the definition that $A \subseteq L$.
(a) There are two cases:
L is finite: Then A is also finite. Since every finite language is decidable (regular even), then A is decidable.
L is infinite: Let D implement the following algorithm:
"On input w :
i. Run E until it either prints w or it prints some string longer than w, whichever comes first
ii. If E prints w, then accept
iii. If E prints a string longer than w, then reject"

Since E enumerates an infinite language (by assumption), it must print strings that are arbitrarily long. Thus on any input w, Step (i) will eventually complete, and so D is a decider. It is also straightforward to see that $w \in A$ iff D accepts w. Thus D decides A, and so A is decidable.
[Note that in general we cannot compute, given $\langle E\rangle$, which case holds-finite or infinite. This question is undecidable, but it does not affect the decidability of A.]
(b) Assume that L is infinite. For any length $n \geq 0$, there are only finitely many strings of length $\leq n$, and so E must eventually print a string longer than n. The first such string printed by E is in A (clearly). So A contains a string longer than n. Since n is arbitrary, A must contain arbitrarily long strings, so A must be infinite.
5. (10 points) Prove that if TQBF $\in \mathrm{NP}$, then $\mathrm{NP}=\mathrm{PSPACE}$.

Answer: We already know that NP \subseteq PSPACE (this was proven in class), so it suffices to show that PSPACE \subseteq NP. Let A be any language in PSPACE. We know that TQBF is PSPACE-complete, so in particular, TQBF is PSPACE-hard, which means $A \leq_{\mathrm{m}}^{\mathrm{p}}$ TQBF because $A \in$ PSPACE. Now suppose that TQBF $\in \mathrm{NP}$. We proved in class that for any languages C and D, if $C \leq_{\mathrm{m}}^{\mathrm{p}} D$ and $D \in \mathrm{NP}$, then $C \in$ NP. In this case, we have $A \leq_{\mathrm{m}}^{\mathrm{p}} \mathrm{TQBF}$ and TQBF \in NP (by assumption), and thus $A \in$ NP. Since A was any PSPACE language, this shows that PSPACE \subseteq NP.
6. (15 points) Let

$$
L=\left\{\langle M, w\rangle \mid M \text { is a DFA that accepts } w^{n} \text { for all } n \geq 0\right\} .
$$

Show that $L \in \mathbf{P}$ by giving a polynomial-time decision procedure for L. (A high-level algorithm will suffice.)

Answer: Let

$N=$ "On input $\langle M, w\rangle$ where M is a DFA and w is a string:
(a) Let n be the number of states of M
(b) For $i:=0$ to $n-1$ do
i. Run M on input w^{i}
ii. If M rejects w^{i}, then reject
(c) Accept"

Why this works: Clearly, N runs in polynomial time (quartic time, actually, although this is not optimal). It is also clear that if $\langle M, w\rangle \in L$ then N accepts $\langle M, w\rangle$. But the converse is also true: Suppose $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where $|Q|=n$. Let $q_{0}, q_{1}, q_{2}, \ldots$ be the sequence of states that M enters after reading inputs $w^{0}, w^{1}, w^{2}, \ldots$, respectively. That is, let $q_{i}=\delta\left(q_{0}, w^{i}\right)$ for all $i \geq 0$, and note that $q_{i+1}=\delta\left(q_{i}, w\right)$. By its construction, N accepts $\langle M, w\rangle$ if and only if $\left\{q_{0}, q_{1}, \ldots, q_{n-1}\right\} \subseteq F$. Since M has only n states, by the Pigeon Hole Principle, there must be some $0 \leq i<j \leq n$ such that $q_{i}=q_{j}$ (this is similar to the proof of the Pumping Lemma). But then, $q_{i+1}=q_{j+1}, q_{i+2}=q_{j+2}$, etc. That is, we have a loop, which implies that all states in the sequence are in the set $\left\{q_{0}, q_{1}, \ldots, q_{n-1}\right\}$. Thus N only needs to test whether these states are all in F.
7. (20 points total) Let φ be the quantified Boolean formula

$$
\left(\exists x_{1}\right)\left(\forall x_{2}\right)\left(\exists x_{3}\right)\left[\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right)\right] .
$$

(a) (15 points) Give the instance $\langle G, s\rangle$ of GG that φ maps to via the p-m-reduction of TQBF to GG described either in the book or in class. (Draw the digraph G and label the start vertex s.)

Answer:

(b) (5 points) Is φ true?

Answer: No, φ is false. For any truth value Alice picks for x_{1}, Bob picks the same truth value for x_{2}, which guarantees that at least one clause is violated, regardless of Alice's choice of x_{3}. This shows that Bob has a winning strategy, not Alice.

