
Answers to the CSCE 551 Final Exam, April 30, 2008

1. (15 points) Use the Pumping Lemma to show that the language

L = {x ∈ {0, 1}∗ | the number of 0s and 1s in x differ (in either direction) by at most 2008}

is not regular.

Answer: Given p > 0, let s = 0p1p+2008. Clearly, |s| = 2p + 2008 ≥ p and s ∈ L.
If x, y, z are such that xyz = s, |xy| ≤ p, and |y| > 0, then we must have y = 0m for
some m > 0. Letting i = 0, we remove m zeros to get

xyiz = xy0z = xz = 0p−m1p+2008 /∈ L.

Thus by the Pumping Lemma, L is not regular. (There are many other workable
choices of s and i.)

2. (10 points) The following DFA is not minimum:
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Using any method you like, find the minimum equivalent DFA. (Draw its transition
diagram.)

Answer: States A and C are the only pair of indistinguishable states. Combining
them, we get the minimum DFA:
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3. (15 points) Give an m-reduction from ATM to the language

B = {〈R〉 | R is a TM that accepts a string w iff |w| = 2008}.

Answer: Let

f = “On input 〈M, w〉 where M is a TM and w is a string:

(a) Let R = ‘On input x:

i. If |x| 6= 2008 then reject

ii. Simulate M on w (and do what M does)’

(b) Output 〈R〉”

Then f m-reduces ATM to B.

4. (25 points total) Fix some enumerator E. Let A be the language of all strings w such
that

• E prints w at least once, and

• w is at least as long as any string that E prints before it first prints w.

Show:

(a) (15 points) A is decidable.

(b) (10 points) If E enumerates an infinite language, then A is infinite.

[This proves that every infinite Turing recognizable set has an infinite decidable subset.]
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Answer: Let L be the language enumerated by E. It follows from the definition that
A ⊆ L.

(a) There are two cases:

L is finite: Then A is also finite. Since every finite language is decidable (regular
even), then A is decidable.

L is infinite: Let D implement the following algorithm:

“On input w:

i. Run E until it either prints w or it prints some string longer than
w, whichever comes first

ii. If E prints w, then accept

iii. If E prints a string longer than w, then reject”

Since E enumerates an infinite language (by assumption), it must print strings
that are arbitrarily long. Thus on any input w, Step (i) will eventually com-
plete, and so D is a decider. It is also straightforward to see that w ∈ A iff
D accepts w. Thus D decides A, and so A is decidable.

[Note that in general we cannot compute, given 〈E〉, which case holds—finite or
infinite. This question is undecidable, but it does not affect the decidability of
A.]

(b) Assume that L is infinite. For any length n ≥ 0, there are only finitely many
strings of length ≤ n, and so E must eventually print a string longer than n. The
first such string printed by E is in A (clearly). So A contains a string longer than
n. Since n is arbitrary, A must contain arbitrarily long strings, so A must be
infinite.

5. (10 points) Prove that if TQBF ∈ NP, then NP = PSPACE.

Answer: We already know that NP ⊆ PSPACE (this was proven in class), so it
suffices to show that PSPACE ⊆ NP. Let A be any language in PSPACE. We know
that TQBF is PSPACE-complete, so in particular, TQBF is PSPACE-hard, which
means A ≤p

m TQBF because A ∈ PSPACE. Now suppose that TQBF ∈ NP. We
proved in class that for any languages C and D, if C ≤p

m D and D ∈ NP, then
C ∈ NP. In this case, we have A ≤p

m TQBF and TQBF ∈ NP (by assumption), and
thus A ∈ NP. Since A was any PSPACE language, this shows that PSPACE ⊆ NP.

6. (15 points) Let

L = {〈M, w〉 | M is a DFA that accepts wn for all n ≥ 0}.

Show that L ∈ P by giving a polynomial-time decision procedure for L. (A high-level
algorithm will suffice.)
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Answer: Let

N = “On input 〈M, w〉 where M is a DFA and w is a string:

(a) Let n be the number of states of M

(b) For i := 0 to n− 1 do

i. Run M on input wi

ii. If M rejects wi, then reject

(c) Accept”

Why this works: Clearly, N runs in polynomial time (quartic time, actually, although
this is not optimal). It is also clear that if 〈M, w〉 ∈ L then N accepts 〈M, w〉.
But the converse is also true: Suppose M = (Q, Σ, δ, q0, F ), where |Q| = n. Let
q0, q1, q2, . . . be the sequence of states that M enters after reading inputs w0, w1, w2, . . . ,
respectively. That is, let qi = δ(q0, w

i) for all i ≥ 0, and note that qi+1 = δ(qi, w).
By its construction, N accepts 〈M, w〉 if and only if {q0, q1, . . . , qn−1} ⊆ F . Since M
has only n states, by the Pigeon Hole Principle, there must be some 0 ≤ i < j ≤ n
such that qi = qj (this is similar to the proof of the Pumping Lemma). But then,
qi+1 = qj+1, qi+2 = qj+2, etc. That is, we have a loop, which implies that all states in
the sequence are in the set {q0, q1, . . . , qn−1}. Thus N only needs to test whether these
states are all in F .

7. (20 points total) Let ϕ be the quantified Boolean formula

(∃x1)(∀x2)(∃x3)[ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2) ].

(a) (15 points) Give the instance 〈G, s〉 of GG that ϕ maps to via the p-m-reduction
of TQBF to GG described either in the book or in class. (Draw the digraph G
and label the start vertex s.)

Answer:
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(b) (5 points) Is ϕ true?

Answer: No, ϕ is false. For any truth value Alice picks for x1, Bob picks the
same truth value for x2, which guarantees that at least one clause is violated,
regardless of Alice’s choice of x3. This shows that Bob has a winning strategy,
not Alice.
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