Answers to the CSCE 551 Final Exam, April 30, 2008

1. (15 points) Use the Pumping Lemma to show that the language

 $L = \{x \in \{0, 1\}^* \mid \text{the number of 0s and 1s in } x \text{ differ (in either direction) by at most 2008}\}$ is not regular.

Answer: Given p > 0, let $s = 0^p 1^{p+2008}$. Clearly, $|s| = 2p + 2008 \ge p$ and $s \in L$. If x, y, z are such that xyz = s, $|xy| \le p$, and |y| > 0, then we must have $y = 0^m$ for some m > 0. Letting i = 0, we remove m zeros to get

$$xy^i z = xy^0 z = xz = 0^{p-m} 1^{p+2008} \notin L.$$

Thus by the Pumping Lemma, L is not regular. (There are many other workable choices of s and i.)

2. (10 points) The following DFA is not minimum:

Using any method you like, find the minimum equivalent DFA. (Draw its transition diagram.)

Answer: States A and C are the only pair of indistinguishable states. Combining them, we get the minimum DFA:

3. (15 points) Give an m-reduction from $A_{\rm TM}$ to the language

 $B = \{ \langle R \rangle \mid R \text{ is a TM that accepts a string } w \text{ iff } |w| = 2008 \}.$

Answer: Let

f = "On input $\langle M, w \rangle$ where M is a TM and w is a string:

- (a) Let R = 'On input x:
 - i. If $|x| \neq 2008$ then reject
 - ii. Simulate M on w (and do what M does)'
- (b) Output $\langle R \rangle$ "

Then f m-reduces $A_{\rm TM}$ to B.

- 4. (25 points total) Fix some enumerator E. Let A be the language of all strings w such that
 - E prints w at least once, and
 - w is at least as long as any string that E prints before it first prints w.

Show:

- (a) (15 points) A is decidable.
- (b) (10 points) If E enumerates an infinite language, then A is infinite.

[This proves that every infinite Turing recognizable set has an infinite decidable subset.]

Answer: Let *L* be the language enumerated by *E*. It follows from the definition that $A \subseteq L$.

- (a) There are two cases:
 - L is finite: Then A is also finite. Since every finite language is decidable (regular even), then A is decidable.
 - L is infinite: Let D implement the following algorithm:

"On input w:

- i. Run E until it either prints w or it prints some string longer than w, whichever comes first
- ii. If E prints w, then accept
- iii. If E prints a string longer than w, then reject"

Since E enumerates an infinite language (by assumption), it must print strings that are arbitrarily long. Thus on any input w, Step (i) will eventually complete, and so D is a decider. It is also straightforward to see that $w \in A$ iff D accepts w. Thus D decides A, and so A is decidable.

[Note that in general we cannot compute, given $\langle E \rangle$, which case holds—finite or infinite. This question is undecidable, but it does not affect the decidability of A.]

- (b) Assume that L is infinite. For any length $n \ge 0$, there are only finitely many strings of length $\le n$, and so E must eventually print a string longer than n. The *first* such string printed by E is in A (clearly). So A contains a string longer than n. Since n is arbitrary, A must contain arbitrarily long strings, so A must be infinite.
- 5. (10 points) Prove that if $TQBF \in NP$, then NP = PSPACE.

Answer: We already know that NP \subseteq PSPACE (this was proven in class), so it suffices to show that PSPACE \subseteq NP. Let A be any language in PSPACE. We know that TQBF is PSPACE-complete, so in particular, TQBF is PSPACE-hard, which means $A \leq_{\mathrm{m}}^{\mathrm{p}}$ TQBF because $A \in$ PSPACE. Now suppose that TQBF \in NP. We proved in class that for any languages C and D, if $C \leq_{\mathrm{m}}^{\mathrm{p}} D$ and $D \in$ NP, then $C \in$ NP. In this case, we have $A \leq_{\mathrm{m}}^{\mathrm{p}}$ TQBF and TQBF \in NP (by assumption), and thus $A \in$ NP. Since A was any PSPACE language, this shows that PSPACE \subseteq NP.

6. (15 points) Let

 $L = \{ \langle M, w \rangle \mid M \text{ is a DFA that accepts } w^n \text{ for all } n \ge 0 \}.$

Show that $L \in \mathbf{P}$ by giving a polynomial-time decision procedure for L. (A high-level algorithm will suffice.)

Answer: Let

N = "On input $\langle M, w \rangle$ where M is a DFA and w is a string:

- (a) Let n be the number of states of M
- (b) For i := 0 to n 1 do
 - i. Run M on input w^i
 - ii. If M rejects w^i , then reject
- (c) Accept"

Why this works: Clearly, N runs in polynomial time (quartic time, actually, although this is not optimal). It is also clear that if $\langle M, w \rangle \in L$ then N accepts $\langle M, w \rangle$. But the converse is also true: Suppose $M = (Q, \Sigma, \delta, q_0, F)$, where |Q| = n. Let q_0, q_1, q_2, \ldots be the sequence of states that M enters after reading inputs w^0, w^1, w^2, \ldots , respectively. That is, let $q_i = \delta(q_0, w^i)$ for all $i \geq 0$, and note that $q_{i+1} = \delta(q_i, w)$. By its construction, N accepts $\langle M, w \rangle$ if and only if $\{q_0, q_1, \ldots, q_{n-1}\} \subseteq F$. Since M has only n states, by the Pigeon Hole Principle, there must be some $0 \leq i < j \leq n$ such that $q_i = q_j$ (this is similar to the proof of the Pumping Lemma). But then, $q_{i+1} = q_{j+1}, q_{i+2} = q_{j+2}$, etc. That is, we have a loop, which implies that all states in the sequence are in the set $\{q_0, q_1, \ldots, q_{n-1}\}$. Thus N only needs to test whether these states are all in F.

7. (20 points total) Let φ be the quantified Boolean formula

 $(\exists x_1)(\forall x_2)(\exists x_3)[(x_1 \lor x_3) \land (x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2})].$

(a) (15 points) Give the instance $\langle G, s \rangle$ of GG that φ maps to via the p-m-reduction of TQBF to GG described either in the book or in class. (Draw the digraph G and label the start vertex s.)

Answer:

(b) (5 points) Is φ true?

Answer: No, φ is false. For any truth value Alice picks for x_1 , Bob picks the same truth value for x_2 , which guarantees that at least one clause is violated, regardless of Alice's choice of x_3 . This shows that Bob has a winning strategy, not Alice.