Problem 1 (DFA Minimization — Essential)
Consider the following DFA A over the alphabet $\{0, 1\}$:

(1) Give the table T of distinguishabilities for A. Show only the proper lower triangle of T, that is, fill in the following table with X in each entry corresponding to a pair of distinguishable

(2) Draw the minimal (4-state) DFA equivalent to A.

Problem 2 (NFA Conversion)
Consider the following clean NFA N:

(1) Using the state-elimination method described in the book or in class, convert N into an equivalent regular expression.

(2) Using the set-of-states method, convert N into an equivalent DFA, only giving those states that are reachable from the start state S. Do not perform any simplifications such as merging indistinguishable states.
Problem 3 (Closure Properties of Regular Languages — Essential)
The alphabet in this problem contains the symbol 0. For any word \(w \) on our alphabet let \(\text{NoZero}(w) \) result from \(w \) by deleting all the 0’s in \(w \) and then closing up the gaps. For any language \(L \) let \(\text{NoZero}(L) = \{ \text{NoZero}(w) \mid w \in L \} \). Prove that if \(L \) is a regular language, then so is \(\text{NoZero}(L) \).

Problem 4 (The Pumping Lemma)
Show that the language
\[
L = \{ w \in \Sigma^* \mid \text{no prefix of } w \text{ has more 0's than 1's} \}
\]
is not pumpable (hence not regular). [Note: a string \(w \) is always a prefix of itself.]

Problem 5 (Turing Machines — Essential)
Consider a standard, one-tape Turing machine \(M \) with input alphabet \(\{0, 1\} \), tape alphabet \(\{0, 1, \sqcup\} \) where \(\sqcup \) is the blank symbol, and the following transition diagram:

Give the sequence of IDs (configurations) of the complete computation of \(M \) on each of the three inputs 011, 10, and 0. (Hint: \(M \) decides the language of all binary strings of odd length whose middle symbol is 1, so the first input is accepted while the other two are rejected.)

Problem 6 (Decidability and Computability)
Fix some enumerator \(E \) that enumerates an infinite language. Let \(A \) be the language of all strings \(w \) so that
- \(E \) prints \(w \) at least once, and
- when \(w \) is first printed, it is longer than any string \(E \) has printed before.
Show that \(A \) is infinite and decidable. For the latter, give an explicit decision procedure for \(A \).

Problem 7 (Undecidability and Noncomputability — Essential)
Let \(f \) be a function that has the following property: for any TM \(M \) and string \(w \) such that \(M \) accepts \(w \), \(f(\langle M, w \rangle) \) outputs a number \(t \) such that \(M \) accepts \(w \) in less than \(t \) steps. (If \(M \) does not accept \(w \), then \(f(\langle M, w \rangle) \) could be any natural number.)
Show that no such \(f \) can be computable. [Hint: Show that if \(f \) were computable, then one can decide \(\overline{A_{TM}} \).]

Problem 8 (Enumerability/Turing Recognizability)
Let \(f \) be a computable function. Show that range(\(f \)) is Turing-recognizable. (Here, range(\(f \)) is defined as \(\{ y \mid (\exists x) f(x) = y \} \).

Problem 9 (Reducibility — Essential)
Let \(B := \{ \langle M \rangle \mid M \text{ is a TM and } 010 \in L(M) \text{ and } 011 \notin L(M) \} \). Construct a mapping reduction from \(\overline{A_{TM}} \) to \(B \).

Problem 10 (Polynomial-Time Computability)
Let
\[
L := \{ w \mid \langle M, w \rangle \mid M \text{ is a DFA that accepts } w^n \text{ for all natural numbers } n \}
\]
Show that \(L \in \text{P} \) by giving a polynomial time decision procedure for \(L \).
Problem 11 (NP and NP-Completeness — Essential)
The language
\[\text{VERTEXCOVER} := \{ \langle G, k \rangle \mid G \text{ is a graph that has a vertex cover of size } k \} \].
Show that VERTEXCOVER is NP-complete.

Problem 12 (Space-Bounded Computation)
Prove that if TBFQ ∈ NP, then NP = PSPACE.