\[\text{trans}(s, x) = t \] (state)

\[t \to \varnothing \]

\text{repeat}

\text{if } A \to a, X, A \text{ is in } S, \text{ where } A \text{ is a non-terminal, } a, b \text{ are symbols of grammar,}\n
\text{X is a proper symbol}\n
\text{add } A \to aX, \varnothing \text{ to } t

\text{// } A \to aX, \varnothing

\text{until all such items are added to } t

\text{return } \text{clause(t)}

\text{Start state:}

\[S_0 = \text{Closure}((S \to S)) \]

where \(S' \) is the start symbol at the augmented grammar.

\[S_0 \text{ is start state; } S \to E \]

\[E \to E + T | T \]

\[T \to T \times F | F \]

\[F \to c \]

\[F \to (E) \]

\[S_0 \text{ =trans}(S_0, E): \]

\[S \to E, \]

\[E \to E + T \]

\[S_0 \text{ =trans}(S_0, T): \]

\[E \to T, \]

\[T \to T \times F \]

\[S_0 \text{ =trans}(S_0, F): \]

\[T \to F, \]

\[F \to c, \]

\[F \to (E) \]

\[S_0 \text{ =trans}(S_0, '('): \]

\[F \to (E), \]

\[E \to E + T \]

\[E \to T, \]

\[T \to T \times F \]

\[F \to c, \]

\[F \to (E) \]

\[\text{etc.} \]

Construct the goto and action tables for the SLR(1) parser.

For every non-terminal \(A \) and state \(S \), define

\[\text{goto}(S, A) = \text{trans}(S, A) \]

For every state containing the item \(S \to s \), (found on top of stack)

set action[\(S, \theta \)] = "accept"

For every state containing an item of the form \(A \to a \cdot b \)

where \(A \) is a non-terminal

\(b \) is a token

set action[\(S, b \)] = "shift t"

where \(t = \text{trans}(S, b) \)

\(t \) contains \(A \to a \cdot b, \varnothing \)

For every state \(S \) containing \(A \to a \cdot \),

set action[\(S, a \)] = "reduce \(A \to a \)"

for each token \(a \in \text{Follow}(A) \).