Context-Free Grammar
(CFG or grammar)

- terminals (abstract or lexical)
- nonterminals (abstract)
- productions (rules)

Grammar for balanced parentheses:

\[S \rightarrow (S)S \]
\[S \rightarrow ()S \]
\[S \rightarrow (S) \]

where \(S \) represents any string of balanced parentheses.

A derivation from some nonterminal \(A \) is a sequence of the form

\[A \rightarrow a_1 \rightarrow a_2 \rightarrow \ldots \rightarrow a_n \]

where each \(a_i \) is a string of nonterminals and terminals ("sentential form") and each \(a_{i+1} \) results from \(a_i \) by replacing some occurrences of a nonterminal \(V \) with the right-hand side of a production whose left-hand side is \(V \).

Production (in general):

\[V \rightarrow X_1X_2X_3 \ldots X_n \]

where \(V \) is a nonterminal and \(X_1, \ldots, X_n \) are nonterminals or terminals (\(n \geq 0 \)).

A context-free grammar is a list of productions:

\[S \rightarrow \epsilon \]
\[S \rightarrow (S)S \]
\[S \rightarrow (S) \]
\[S \rightarrow ()S \]
\[S \rightarrow (S) \]

A starting symbol is interpreted as the start symbol.

(Convention: the start symbol will be the last in the list of productions in the text.)

A derivation is complete if (it's finite, and)

- it starts with the start symbol
- and ends with a string consisting only of terminals.

Let \(G \) be a grammar:

\[N = \text{set of nonterminals} \]
\[T = \text{set of terminals} \]
\[\Delta = \text{set of productions} \]

\[|N| + |T| = \beta \]

Let \(S \) be the start symbol.

A string \(\alpha \) is terminal if \(\alpha \) consists only of terminals.

A string \(\alpha \) is generated by \(G \) (Chomsky from a complete derivation ending in \(\alpha \).)
term (T) is a string of one or more factors (F) separated by \(\times, \div \), \% (grouped from left to right)

\[
T \rightarrow F \mid T \times F \mid T \div F \mid T \% F
\]

\[
F \rightarrow c \mid v \mid (E)
\]

This is the standard unambiguous grammar for arithmetic expressions.