CSCE 355, Assignment 4

Pumping Lemma Review
Here we review the Pumping Lemma for regular languages. This relates to Exercise 8, below.
Definition 1. We say that a language L is pumpable iff

there exists an integer p > 0 such that
for all strings w € L with |w| > p,
there exist strings x,y, z with zyz = w and |zy| < p and |y| > 0 such that
for every integer ¢ > 0,
ry'z € L.

We prove this in class:

Lemma 2 (Pumping Lemma for Regular Languages). For any language L, if L is reqular, then L
s pumpable.

Here is the contrapositive, which is an equivalent statement:

Lemma 3 (Pumping Lemma (contrapositive form)). For any language L, if L is not pumpable,
then L is not regqular.

We use the contrapositive form to prove that certain languages are not regular by showing that
they are not pumpable. By definition, a language L is not pumpable iff

for any integer p > 0,
there exists a string s € L with |s| > p such that
for all strings x,y, z with zyz = s and |zy| < p and |y| > 0,
there exists an integer ¢ > 0 such that
ry'z ¢ L.

Here is a template for a proof that a language L is not pumpable (and hence not regular). Parts
in brackets are to be filled in with specifics for any given proof.

Given any p > 0,

let s := [describe some string in L with length > p].

Now for any x,y, z with xyz = s and |zy| < p and |y| > 0,

let i := [give some integer > 0 which might depend on p, s, z, y, and z].
Then we have ry’z ¢ L because [give some reason/explanation].

Note:



We cannot choose p. The value of p could be any positive integer, and we have to deal with
whatever value of p is given to us.

We can and do choose the string s, which will differ depending on the given value of p (so
the description of s has to use p somehow). We must choose s to be in L and with length
> p, however.

We cannot choose x, y, or z. These are given to us and could be any strings, except we know
that they must satisfy xyz = s, |zy| < p, and |y| > 0.

We get to choose ¢ > 0 based on all the previous values.

Example: Let

L ={w € {0,1}" | w has more 0’s than 1’s}.

We show that L is not pumpable using the template:

Given any p > 0,

let s := 0P1P~!. (Clearly, s € L and |s| > p.)

Now for any z,y, z with zyz = s and |zy| < p and |y| > 0,

let : = 0.

Then we have xy‘z = 24’2 = x2 ¢ L, which can be seen as follows: Since |zy| < p it
must be that z and y consist entirely of 0’s, and so y = 0™ for some m, and we further
have m > 1 because |y| > 0. But then zz = 0P~™1P~! and so because p —m < p — 1,
the string xz does not have more 0’s than 1’s, and thus zz ¢ L.

Exercises

1.

2.

Consider the DFA N (below left) over the alphabet {0, 1}:

DT QW

A B C D

(a) Fill in the distiguishability table to the right with X in each entry corresponding to a
pair of distinguishable states.

(b) Draw the minimal DFA equivalent to N.

Using the sets-of-states method described in class or in the book, convert the following NFA
N (no e-moves) to an equivalent DFA D:

a b

—1 ‘ {1,2} {1}

20 {2p {13}
3| 0 0




Only give states of D that are reachable from its start state, and label each state of D with
the states of N that it contains. Include all dead states (if there are any), and do not merge
indistinguishable states.

. Consider the regex 7 := (a+b)*(b+ c)* over the alphabet ¥ := {a,b, c}. Find a regex 7 such
that L(7) = L(r), the complement of L(r) in ¥*. Do this as follows:

(a) Convert r to an equivalent e-NFA N. (You may contract e-transitions provided it is
sound to do so.)

(b) Remove e-transitions from N to get an equivalent NFA N’ using the method described
in class and the course notes (Method 2).

(c) Using the sets-of-states construction described in class, convert N’ into an equivalent
DFA D. (Only include states of D reachable from its start state.)

(d) (Optional) Minimize D by merging indistinguishable states, if any.
(e) Form the complementary DFA —D.

(f) Starting with a clean e-NFA equivalent to —D, find the equivalent regex 7 by the state
elimination method described in class.

As far as anyone knows, there is no general procedure for negating (complementing) a regex
that is significantly faster than going through the steps above. The same holds for finding a
regex for the intersection of two languages given by regexes, which would involve the product
construction on two e-NFAs or DFAs.

. For any string w # ¢, the principal suffix of w is the string resulting by removing the first
symbol from w. We will denote this string by ps(w). For any language L, define ps(L) :=
{ps(w) : w e L N w # e}. Show that if L is regular, then ps(L) is regular. (The underlying
alphabet is arbitrary.)

. (not in the textbook; optional) A string x is a subsequence of a string y (written =z =< y) if
the symbols of = appear in y in order (although not necessarily contiguously). For language
L C X*, define

SUBSEQ(L) :={z € X" : (Jy € L)[z = y|},

that is, SUBSEQ(L) is the set of all subsequences of strings in L. For example, if L =
{aabc, cab}, then

SUBSEQ(L) = {e,a,b, c, aa, ab, ac, bc, aab, aac, abc, aabc, ca, cb, cab}.

Show that if L is regular, then SUBSEQ(L) is regular. [Hint: Two methods will work here:
(1) transforming a regular expression for L into a regular expression for SUBSEQ(L); (2)
transforming an e-NFA for L into an e-NFA for SUBSEQ(L). By the way, it is known that if
L is any language whatsoever, then SUBSEQ(L) is regular, but the proof of this fact is not
constructive.|

. (I (not in the textbook; optional)) Fix a finite alphabet ¥. Given string w € ¥*, a cyclic
shift of w is any string of the form yx where x,y € ¥* are such that w = zy. Given language
L C ¥*, define

cyclicShift(L) := {yz |z,y e ¥* Nzy € L},



10.

the language of all cyclic shifts of strings in L. Show that if L is regular, then cyclicShift(L) is
regular. [Hint: Using an n-state e-NFA recognizing L, you can construct an e-NFA recognizing
cyclicShift(L) with about 2n? many states.]

(! (not in the textbook; optional)) Let x and y be any two strings over an alphabet ¥. A
merge of x and y is any string over X obtained by merging the symbols of x with those of y
in some arbitrary way, maintaining the order of the symbols from each string. More exactly,
a string z € ¥* is a merge of x and y iff there exist strings x1, ...,z and y1,...,yx in X* (for
some k > 0) such that

® T =12 " Tk,

® Yy=1u1y2- Yk, and

® T =T1Y122Y2 "+ LYk

For example, there are five different merges of the strings ab and bc:

abbc, abcb, babc, bacb, bcab

Let A and B be any languages over Y. Define
Amerge B := {z € ¥* | z is a merge of some z € A and some y € B}.

Show that if A and B are both regular, then A merge B is regular. Hint: Given a DFA for
A with » many states and an DFA for B with s many states, you can construct an NFA for
A merge B with rs many states.

(Exercise 4.1.1 (selected items)): Prove that the following are not regular languages. For each,
show that the given language is not pumpable. [You may use the template given above.]

a e set of strings of balanced parentheses. ese are the strings of characters an
Th f stri f bal d h Th h i f ch “(” and
“)” that can appear in a well-formed arithmetic expression.
(b) {0"10™ | n > 1}.
c n and m are arbitrary integers;.
Qrnym2n d bit int
(d) {0"1%" | n > 1}.

. Consider the following grammar generating the language of strings of well-balanced paren-

theses:
S—(9)S | e

Give a leftmost derivation of the string (()) and a rightmost derivation of the string ()(()())-
Also give a parse tree yielding each string (two parse trees in all).

Describe briefly in words the language L(G), where G = ({A, B}, {a,b,c}, A, P) is a context-
free grammar and the productions in P are

A — aAc|B
B — €| Bc



11. Give a context-free grammar for the language {a‘d™c" | £ < m or m < n}. (Note that the
connective is “or,” not “and.”)

12. Consider the grammar of Exercise 5.1.8:
S — aSbS |bSal | e

Show that abba is generated by the grammar but aba is not generated by the grammar. (This
is a special case of the full exercise.)



