
CSCE 355, Assignment 4

Pumping Lemma Review

Here we review the Pumping Lemma for regular languages. This relates to Exercise 8, below.

Definition 1. We say that a language L is pumpable iff

there exists an integer p > 0 such that
for all strings w ∈ L with |w| ≥ p,

there exist strings x, y, z with xyz = w and |xy| ≤ p and |y| > 0 such that
for every integer i ≥ 0,

xyiz ∈ L.

We prove this in class:

Lemma 2 (Pumping Lemma for Regular Languages). For any language L, if L is regular, then L
is pumpable.

Here is the contrapositive, which is an equivalent statement:

Lemma 3 (Pumping Lemma (contrapositive form)). For any language L, if L is not pumpable,
then L is not regular.

We use the contrapositive form to prove that certain languages are not regular by showing that
they are not pumpable. By definition, a language L is not pumpable iff

for any integer p > 0,
there exists a string s ∈ L with |s| ≥ p such that

for all strings x, y, z with xyz = s and |xy| ≤ p and |y| > 0,
there exists an integer i ≥ 0 such that

xyiz /∈ L.

Here is a template for a proof that a language L is not pumpable (and hence not regular). Parts
in brackets are to be filled in with specifics for any given proof.

Given any p > 0,
let s := [describe some string in L with length ≥ p].
Now for any x, y, z with xyz = s and |xy| ≤ p and |y| > 0,
let i := [give some integer ≥ 0 which might depend on p, s, x, y, and z].
Then we have xyiz /∈ L because [give some reason/explanation].

Note:

1



• We cannot choose p. The value of p could be any positive integer, and we have to deal with
whatever value of p is given to us.

• We can and do choose the string s, which will differ depending on the given value of p (so
the description of s has to use p somehow). We must choose s to be in L and with length
≥ p, however.

• We cannot choose x, y, or z. These are given to us and could be any strings, except we know
that they must satisfy xyz = s, |xy| ≤ p, and |y| > 0.

• We get to choose i ≥ 0 based on all the previous values.

Example: Let
L = {w ∈ {0, 1}∗ | w has more 0’s than 1’s}.

We show that L is not pumpable using the template:

Given any p > 0,
let s := 0p1p−1. (Clearly, s ∈ L and |s| ≥ p.)
Now for any x, y, z with xyz = s and |xy| ≤ p and |y| > 0,
let i = 0.
Then we have xyiz = xy0z = xz /∈ L, which can be seen as follows: Since |xy| ≤ p it
must be that x and y consist entirely of 0’s, and so y = 0m for some m, and we further
have m ≥ 1 because |y| > 0. But then xz = 0p−m1p−1, and so because p−m ≤ p− 1,
the string xz does not have more 0’s than 1’s, and thus xz /∈ L.

Exercises

1. Consider the DFA N (below left) over the alphabet {0, 1}:

Astart

D

B C

E

0

1

0

1
0

1

0
1

0

1

D

B

C

D

E

A B C

(a) Fill in the distiguishability table to the right with X in each entry corresponding to a
pair of distinguishable states.

(b) Draw the minimal DFA equivalent to N .

2. Using the sets-of-states method described in class or in the book, convert the following NFA
N (no ϵ-moves) to an equivalent DFA D:

a b

→ 1 {1, 2} {1}
2 {2} {1, 3}
∗3 ∅ ∅

2



Only give states of D that are reachable from its start state, and label each state of D with
the states of N that it contains. Include all dead states (if there are any), and do not merge
indistinguishable states.

3. Consider the regex r := (a+b)∗(b+c)∗ over the alphabet Σ := {a, b, c}. Find a regex r such
that L(r) = L(r), the complement of L(r) in Σ∗. Do this as follows:

(a) Convert r to an equivalent ϵ-NFA N . (You may contract ϵ-transitions provided it is
sound to do so.)

(b) Remove ϵ-transitions from N to get an equivalent NFA N ′ using the method described
in class and the course notes (Method 2).

(c) Using the sets-of-states construction described in class, convert N ′ into an equivalent
DFA D. (Only include states of D reachable from its start state.)

(d) (Optional) Minimize D by merging indistinguishable states, if any.

(e) Form the complementary DFA ¬D.

(f) Starting with a clean ϵ-NFA equivalent to ¬D, find the equivalent regex r by the state
elimination method described in class.

As far as anyone knows, there is no general procedure for negating (complementing) a regex
that is significantly faster than going through the steps above. The same holds for finding a
regex for the intersection of two languages given by regexes, which would involve the product
construction on two ϵ-NFAs or DFAs.

4. For any string w ̸= ϵ, the principal suffix of w is the string resulting by removing the first
symbol from w. We will denote this string by ps(w). For any language L, define ps(L) :=
{ps(w) : w ∈ L ∧ w ̸= ϵ}. Show that if L is regular, then ps(L) is regular. (The underlying
alphabet is arbitrary.)

5. (not in the textbook; optional) A string x is a subsequence of a string y (written x ⪯ y) if
the symbols of x appear in y in order (although not necessarily contiguously). For language
L ⊆ Σ∗, define

SUBSEQ(L) := {x ∈ Σ∗ : (∃y ∈ L)[x ⪯ y]} ,

that is, SUBSEQ(L) is the set of all subsequences of strings in L. For example, if L =
{aabc, cab}, then

SUBSEQ(L) = {ϵ, a, b, c, aa, ab, ac, bc, aab, aac, abc, aabc, ca, cb, cab}.

Show that if L is regular, then SUBSEQ(L) is regular. [Hint: Two methods will work here:
(1) transforming a regular expression for L into a regular expression for SUBSEQ(L); (2)
transforming an ϵ-NFA for L into an ϵ-NFA for SUBSEQ(L). By the way, it is known that if
L is any language whatsoever, then SUBSEQ(L) is regular, but the proof of this fact is not
constructive.]

6. (! (not in the textbook; optional)) Fix a finite alphabet Σ. Given string w ∈ Σ∗, a cyclic
shift of w is any string of the form yx where x, y ∈ Σ∗ are such that w = xy. Given language
L ⊆ Σ∗, define

cyclicShift(L) := {yx | x, y ∈ Σ∗ ∧ xy ∈ L} ,

3



the language of all cyclic shifts of strings in L. Show that if L is regular, then cyclicShift(L) is
regular. [Hint: Using an n-state ϵ-NFA recognizing L, you can construct an ϵ-NFA recognizing
cyclicShift(L) with about 2n2 many states.]

7. (! (not in the textbook; optional)) Let x and y be any two strings over an alphabet Σ. A
merge of x and y is any string over Σ obtained by merging the symbols of x with those of y
in some arbitrary way, maintaining the order of the symbols from each string. More exactly,
a string z ∈ Σ∗ is a merge of x and y iff there exist strings x1, . . . , xk and y1, . . . , yk in Σ∗ (for
some k ≥ 0) such that

• x = x1x2 · · ·xk,
• y = y1y2 · · · yk, and
• z = x1y1x2y2 · · ·xkyk.

For example, there are five different merges of the strings ab and bc:

abbc, abcb, babc, bacb, bcab

Let A and B be any languages over Σ. Define

AmergeB := {z ∈ Σ∗ | z is a merge of some x ∈ A and some y ∈ B}.

Show that if A and B are both regular, then AmergeB is regular. Hint : Given a DFA for
A with r many states and an DFA for B with s many states, you can construct an NFA for
AmergeB with rs many states.

8. (Exercise 4.1.1 (selected items)): Prove that the following are not regular languages. For each,
show that the given language is not pumpable. [You may use the template given above.]

(a) The set of strings of balanced parentheses. These are the strings of characters “(” and
“)” that can appear in a well-formed arithmetic expression.

(b) {0n10n | n ≥ 1}.
(c) {0n1m2n | n and m are arbitrary integers}.
(d) {0n12n | n ≥ 1}.

9. Consider the following grammar generating the language of strings of well-balanced paren-
theses:

S → (S)S | ϵ

Give a leftmost derivation of the string (()) and a rightmost derivation of the string ()(()()).
Also give a parse tree yielding each string (two parse trees in all).

10. Describe briefly in words the language L(G), where G = ({A,B}, {a, b, c}, A, P ) is a context-
free grammar and the productions in P are

A → aAc | B
B → ϵ | Bc

4



11. Give a context-free grammar for the language {aℓbmcn | ℓ ≤ m or m ≤ n}. (Note that the
connective is “or,” not “and.”)

12. Consider the grammar of Exercise 5.1.8:

S → aSbS | bSaS | ϵ

Show that abba is generated by the grammar but aba is not generated by the grammar. (This
is a special case of the full exercise.)

5


