

CSCE 355, Assignment 4

Pumping Lemma Review

Here we review the Pumping Lemma for regular languages. This relates to Exercise 8, below.

Definition 1. We say that a language L is *pumpable* iff

there exists an integer $p > 0$ such that

for all strings $w \in L$ with $|w| \geq p$,

there exist strings x, y, z with $xyz = w$ and $|xy| \leq p$ and $|y| > 0$ such that

for every integer $i \geq 0$,

$xy^i z \in L$.

We prove this in class:

Lemma 2 (Pumping Lemma for Regular Languages). *For any language L , if L is regular, then L is pumpable.*

Here is the contrapositive, which is an equivalent statement:

Lemma 3 (Pumping Lemma (contrapositive form)). *For any language L , if L is not pumpable, then L is not regular.*

We use the contrapositive form to prove that certain languages are not regular by showing that they are not pumpable. By definition, a language L is *not* pumpable iff

for any integer $p > 0$,

there exists a string $s \in L$ with $|s| \geq p$ such that

for all strings x, y, z with $xyz = s$ and $|xy| \leq p$ and $|y| > 0$,

there exists an integer $i \geq 0$ such that

$xy^i z \notin L$.

Here is a template for a proof that a language L is not pumpable (and hence not regular). Parts in brackets are to be filled in with specifics for any given proof.

Given any $p > 0$,

let $s :=$ [describe some string in L with length $\geq p$].

Now for any x, y, z with $xyz = s$ and $|xy| \leq p$ and $|y| > 0$,

let $i :=$ [give some integer ≥ 0 which might depend on p, s, x, y , and z].

Then we have $xy^i z \notin L$ because [give some reason/explanation].

Note:

- We cannot choose p . The value of p could be any positive integer, and we have to deal with whatever value of p is given to us.
- We *can* and *do* choose the string s , which will differ depending on the given value of p (so the description of s has to use p somehow). We must choose s to be in L and with length $\geq p$, however.
- We cannot choose x , y , or z . These are given to us and could be any strings, except we know that they must satisfy $xyz = s$, $|xy| \leq p$, and $|y| > 0$.
- We get to choose $i \geq 0$ based on all the previous values.

Example: Let

$$L = \{w \in \{0,1\}^* \mid w \text{ has more 0's than 1's}\}.$$

We show that L is not pumpable using the template:

Given any $p > 0$,

let $s := 0^p 1^{p-1}$. (Clearly, $s \in L$ and $|s| \geq p$.)

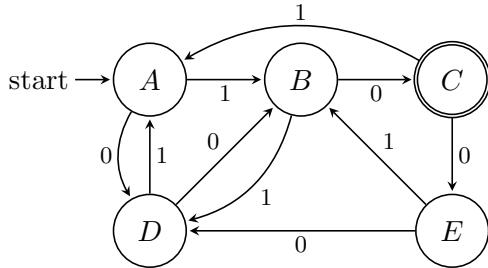
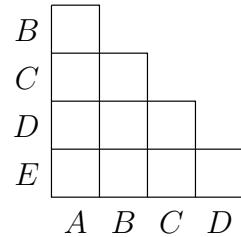
Now for any x, y, z with $xyz = s$ and $|xy| \leq p$ and $|y| > 0$,

let $i = 0$.

Then we have $xy^i z = xy^0 z = xz \notin L$, which can be seen as follows: Since $|xy| \leq p$ it must be that x and y consist entirely of 0's, and so $y = 0^m$ for some m , and we further have $m \geq 1$ because $|y| > 0$. But then $xz = 0^{p-m} 1^{p-1}$, and so because $p - m \leq p - 1$, the string xz does *not* have more 0's than 1's, and thus $xz \notin L$.

Exercises

1. Consider the DFA N (below left) over the alphabet $\{0, 1\}$:



- (a) Fill in the distinguishability table to the right with X in each entry corresponding to a pair of distinguishable states.
- (b) Draw the minimal DFA equivalent to N .
2. Using the sets-of-states method described in class or in the book, convert the following NFA N (no ϵ -moves) to an equivalent DFA D :

	a	b
$\rightarrow 1$	$\{1, 2\}$	$\{1\}$
2	$\{2\}$	$\{1, 3\}$
$*3$	\emptyset	\emptyset

Only give states of D that are reachable from its start state, and label each state of D with the states of N that it contains. Include all dead states (if there are any), and do not merge indistinguishable states.

3. Consider the regex $r := (a + b)^*(b + c)^*$ over the alphabet $\Sigma := \{a, b, c\}$. Find a regex \bar{r} such that $L(\bar{r}) = \overline{L(r)}$, the complement of $L(r)$ in Σ^* . Do this as follows:

- Convert r to an equivalent ϵ -NFA N . (You may contract ϵ -transitions provided it is sound to do so.)
- Remove ϵ -transitions from N to get an equivalent NFA N' using the method described in class and the course notes (Method 2).
- Using the sets-of-states construction described in class, convert N' into an equivalent DFA D . (Only include states of D reachable from its start state.)
- (Optional) Minimize D by merging indistinguishable states, if any.
- Form the complementary DFA $\neg D$.
- Starting with a clean ϵ -NFA equivalent to $\neg D$, find the equivalent regex \bar{r} by the state elimination method described in class.

As far as anyone knows, there is no general procedure for negating (complementing) a regex that is significantly faster than going through the steps above. The same holds for finding a regex for the intersection of two languages given by regexes, which would involve the product construction on two ϵ -NFAs or DFAs.

4. For any string $w \neq \epsilon$, the *principal suffix* of w is the string resulting by removing the first symbol from w . We will denote this string by $ps(w)$. For any language L , define $ps(L) := \{ps(w) : w \in L \wedge w \neq \epsilon\}$. Show that if L is regular, then $ps(L)$ is regular. (The underlying alphabet is arbitrary.)

5. (not in the textbook; optional) A string x is a *subsequence* of a string y (written $x \preceq y$) if the symbols of x appear in y in order (although not necessarily contiguously). For language $L \subseteq \Sigma^*$, define

$$\text{SUBSEQ}(L) := \{x \in \Sigma^* : (\exists y \in L)[x \preceq y]\},$$

that is, $\text{SUBSEQ}(L)$ is the set of all subsequences of strings in L . For example, if $L = \{aab, cab\}$, then

$$\text{SUBSEQ}(L) = \{\epsilon, a, b, c, aa, ab, ac, bc, aab, aac, abc, aabc, ca, cb, cab\}.$$

Show that if L is regular, then $\text{SUBSEQ}(L)$ is regular. [Hint: Two methods will work here: (1) transforming a regular expression for L into a regular expression for $\text{SUBSEQ}(L)$; (2) transforming an ϵ -NFA for L into an ϵ -NFA for $\text{SUBSEQ}(L)$. By the way, it is known that if L is *any language whatsoever*, then $\text{SUBSEQ}(L)$ is regular, but the proof of this fact is not constructive.]

6. (! (not in the textbook; optional)) Fix a finite alphabet Σ . Given string $w \in \Sigma^*$, a *cyclic shift* of w is any string of the form yx where $x, y \in \Sigma^*$ are such that $w = xy$. Given language $L \subseteq \Sigma^*$, define

$$\text{cyclicShift}(L) := \{yx \mid x, y \in \Sigma^* \wedge xy \in L\},$$

the language of all cyclic shifts of strings in L . Show that if L is regular, then $\text{cyclicShift}(L)$ is regular. [Hint: Using an n -state ϵ -NFA recognizing L , you can construct an ϵ -NFA recognizing $\text{cyclicShift}(L)$ with about $2n^2$ many states.]

7. (! (not in the textbook; optional)) Let x and y be any two strings over an alphabet Σ . A *merge* of x and y is any string over Σ obtained by merging the symbols of x with those of y in some arbitrary way, maintaining the order of the symbols from each string. More exactly, a string $z \in \Sigma^*$ is a *merge* of x and y iff there exist strings x_1, \dots, x_k and y_1, \dots, y_k in Σ^* (for some $k \geq 0$) such that

- $x = x_1 x_2 \cdots x_k$,
- $y = y_1 y_2 \cdots y_k$, and
- $z = x_1 y_1 x_2 y_2 \cdots x_k y_k$.

For example, there are five different merges of the strings **ab** and **bc**:

abbc, **abcb**, **babc**, **bacb**, **bcab**

Let A and B be any languages over Σ . Define

$$A \text{ merge } B := \{z \in \Sigma^* \mid z \text{ is a merge of some } x \in A \text{ and some } y \in B\}.$$

Show that if A and B are both regular, then $A \text{ merge } B$ is regular. *Hint:* Given a DFA for A with r many states and an DFA for B with s many states, you can construct an NFA for $A \text{ merge } B$ with rs many states.

8. (Exercise 4.1.1 (selected items)): Prove that the following are not regular languages. For each, show that the given language is not pumpable. [You may use the template given above.]

- The set of strings of balanced parentheses. These are the strings of characters “(” and “)” that can appear in a well-formed arithmetic expression.
- $\{0^n 1 0^n \mid n \geq 1\}$.
- $\{0^n 1^m 2^n \mid n \text{ and } m \text{ are arbitrary integers}\}$.
- $\{0^n 1^{2n} \mid n \geq 1\}$.

9. Consider the following grammar generating the language of strings of well-balanced parentheses:

$$S \rightarrow (S)S \mid \epsilon$$

Give a leftmost derivation of the string $((()$) and a rightmost derivation of the string $((()())$. Also give a parse tree yielding each string (two parse trees in all).

10. Describe briefly in words the language $L(G)$, where $G = (\{A, B\}, \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}, A, P)$ is a context-free grammar and the productions in P are

$$\begin{aligned} A &\rightarrow \mathbf{a} A \mathbf{c} \mid B \\ B &\rightarrow \epsilon \mid B \mathbf{c} \end{aligned}$$

11. Give a context-free grammar for the language $\{a^\ell b^m c^n \mid \ell \leq m \text{ or } m \leq n\}$. (Note that the connective is “or,” not “and.”)

12. Consider the grammar of Exercise 5.1.8:

$$S \rightarrow aSbS \mid bSaS \mid \epsilon$$

Show that **abba** is generated by the grammar but **aba** is *not* generated by the grammar. (This is a special case of the full exercise.)