

CSCE 355, Assignment 3

1. For the ϵ -NFA of textbook Exercise 2.5.2,

	ϵ	a	b	c
$\rightarrow p$	$\{q, r\}$	\emptyset	$\{q\}$	$\{r\}$
q	\emptyset	$\{p\}$	$\{r\}$	$\{p, q\}$
$*r$	\emptyset	\emptyset	\emptyset	\emptyset

find an equivalent NFA (without ϵ -moves) using the method explained in class. This is also Method 2 described in the COURSE NOTES, Section 10.4.

2. Do Exercise 2.5.3(a): Design an ϵ -NFA for the following language: the set of all strings consisting of zero or more a's followed by zero or more b's, followed by zero or more c's. Try to use ϵ -transitions to simplify your design.
3. Do Problem 2.3 [here copied verbatim from pp. 81–82 of the textbook with minor corrections and annotations; this illustrates a proof by string induction and gets you thinking about citing the reasons for various proof steps]: Here is the transition function of a simple, deterministic automaton with start state A and accepting state B :

	0	1
A	A	B
B	B	A

We want to show that this automaton accepts exactly those strings with an odd number of 1's, or more formally:

$$\delta(A, w) = B \text{ if and only if } w \text{ has an odd number of 1's.} \quad (1)$$

Here, δ is the extended transition function of the automaton; that is, $\delta(A, w)$ is the state that the automaton is in after processing input string w . The proof of the statement above is an induction on the length of w . Below, we give the proof with reasons missing. You must give a reason for each step, and then demonstrate your understanding of the proof by classifying your reasons into the following three categories:

- A) Use of the inductive hypothesis.
- B) Reasoning about properties of deterministic finite automata, e.g., that if string $s = yz$, then $\delta(q, s) = \delta(\delta(q, y), z)$.
- C) Reasoning about properties of binary strings (strings of 0's and 1's), e.g., that every string is longer than any of its proper substrings.

Basis ($|w| = 0$):

1. $w = \epsilon$ because:
2. $\delta(A, \epsilon) = A$ because:
3. ϵ has an even number of 0's because:

Induction ($|w| = n > 0$):

4. There are two cases: (a) when $w = x1$ and (b) when $w = x0$ because:

Case (a):

5. In case (a), w has an odd number of 1's if and only if x has an even number of 1's because:
6. In case (a), $\delta(A, x) = A$ if and only if w has an odd number of 1's because:
7. In case (a), $\delta(A, w) = B$ if and only if w has an odd number of 1's because:

Case (b):

8. In case (b), w has an odd number of 1's if and only if x has an odd number of 1's because:
9. In case (b), $\delta(A, x) = B$ if and only if w has an odd number of 1's because:
10. In case (b), $\delta(A, w) = B$ if and only if w has an odd number of 1's because:

4. (a) Show that every regular language is recognized by an ϵ -NFA where out of each state there is *no more than one* ϵ -transition and *no more than one* non- ϵ -transition (i.e., a transition on a symbol from the alphabet).
- (b) Show that every regular language is recognized by an ϵ -NFA where out of each state there is *exactly one* ϵ -transition and *exactly one* non- ϵ -transition (i.e., a transition on a symbol from the alphabet). (A solution to this part is obviously also a solution to the previous part.)

5. Do Exercise 3.1.1(b,c): Write regexes for the following languages:
 - b) The set of strings of 0's and 1's whose tenth symbol from the right end is 1.
 - c) The set of strings of 0's and 1's with at most one pair of consecutive 1's.
6. (Optional) Do the following textbook exercises:

Exercise 3.1.2(b): Write regular expressions for the following languages:

- b) The set of strings of 0's and 1's whose number of 0's is divisible by five.

Exercise 3.1.3(a,b,c): Write regular expressions for the following languages:

- a) The set of all strings of 0's and 1's not containing 101 as a substring.
- b) The set of all strings with an equal number of 0's and 1's, such that no prefix has two more 0's than 1's, nor two more 1's than 0's.
- c) The set of strings of 0's and 1's whose number of 0's is divisible by five and whose number of 1's is even.

7. Write a regular expressions for the following languages over $\{a, b, c\}$:

- The set of strings where no a appears after any b or c .
- The set of strings where no b occurs anywhere after an a (not just continguously). This language is the complement of that given by the regex

$$(a + b + c)^* a (a + b + c)^* b (a + b + c)^* .$$

8. Do Exercise 3.2.3: Convert the following DFA to a regular expression, using the state-elimination technique of Section 3.2.2.

	0	1
$\rightarrow *p$	s	p
q	p	s
r	r	q
s	q	r

9. Do Exercise 3.2.4(c): Convert the following regex to an ϵ -NFA: $00(0 + 1)^*$.

10. Recall the DFA D in item 3 (Problem 2.3 of the textbook) that accepts a binary string iff it has an odd number of 1's:

$$\begin{array}{c|cc} & 0 & 1 \\ \hline \rightarrow A & A & B \\ *B & B & A \end{array}$$

- Convert D into an equivalent clean ϵ -NFA using the clean-up procedure in class (add a new start state, a new final state, and some ϵ -transitions).
- Use the state elimination method to convert D to a regular expression. Eliminate state A first, then B .

11. Same exercise as 10 above, except make A the final state (so that D accepts a string iff it has an *even* number of 1's).

12. (Optional) Recall the product DFA P that counts an even number of zeros and an odd number of ones:

	0	1
$\rightarrow EE$	OE	EO
OE	EE	OO
$*EO$	OO	EE
OO	EO	OE

Use the state elimination method to convert P to a regular expression. (To control the complexity, you may wish to define names for intermediate regexes.)

13. Draw the transition diagram of an ϵ -NFA equivalent to the regex $(a + bc)^* aa$. You may (but are not required to) contract ϵ -transitions provided it is safe to do so.