Midterm 1 Fall 2017 – CSCE 522

Q0 (5)	
Q1 (35)	
Q2 (30)	
Q3 (30)	
Bonus (5)	
Q4 (20)	
Total	
Grade	

Name:	
Major:	

Answer the following questions. Be brief and precise!

Undergraduate students need to answer questions 0 - 3. **Bonus** question is open for all students. **Graduate** and **Honors College** students need to answer all questions 0 - 4. **GOOD LUCK!**

0. 5 points	
I,, pledge that my co	onduct in the course CSCE 522 adheres to the
Honor Code of the University of South Carolina. I will not engage in any type of	f activity that is dishonest, fraudulent, or exhibit
deceit of any type. Honor Code violations include: giving or receiving unauthor	ized assistance on test, accessing test before the
scheduled time, revealing test questions to students who will take the test later, a	and plagiarism.

1. 35 points Cryptography

(10) A good cipher must have been carefully examined by experts. Explain the rationale for this requirement. Give a brief example of security risk if this requirement is not satisfied.

Characteristics	Rationale	Example
The cipher must		
have been		
carefully examined		
by experts.		

(25) Consider the following cryptographic protocol that allows Alice and Bob to establish a secret session key (K_{AB}). Alice and Bob use the following protocol, where E[M, K] denotes the encryption of message M with key K, Id_A, Id_B, are the identities of Alice and Bob, KE-A, KE-B are the public keys of Alice and Bob, and N_A, N_B are nonces generated by Alice and Bob, respectively.

Message 1: Alice \rightarrow Bob: $E[(Id_A, K_{AB}, N_A), KE-B]$ Message 2: Bob \rightarrow Alice: $E[(Id_B, K_{AB}, N_A, N_B), KE-A]$

Message 3: Alice \rightarrow Bob: $E[N_B, K_{AB}]$ Message 4: Bob \rightarrow Alice: $E[M, K_{AB}]$

Eve is a malicious user. Eve's public key is KE-E. Assume that Eve can trick Bob into believing that KE-E is Alice's public key. Show and explain the steps and messages Eve must do to disclose K_{AB} , M such that Bob or Alice won't know that Eve knows K_{AB} .

2. 30 points Basic Security Concepts Complete the following table. I have gave a sample answer for confidentiality.

В	С	D
Give an example of the objective in column A, using the context of university	Describe an attack that would violate the objective of your example described in column B	Describe a security control that would prevent the security violation of column C
Students' grades must remain confidential at all time. Only the student and the professor should know a student's grade.	A laptop containing student grades is stolen. The attacker logs in to the laptop and accesses the grade info.	Store grades in encrypted file and require biometrics-based authentication for login. Use physical security.
	Give an example of the objective in column A, using the context of university Students' grades must remain confidential at all time. Only the student and the professor	Give an example of the objective in column A, using the context of university Students' grades must remain confidential at all time. Only the student and the professor Describe an attack that would violate the objective of your example described in column B A laptop containing student grades is stolen. The attacker logs in to the laptop and

 3. 30 points – Basic concepts and Crypto (15) Which of the followings are true? Multiple simple alphabetic substitutions increase security over a single simple alphabetic substitution. True \ False Why?
 Multiple transpositions increase security over a single transposition. True \ False Why?
 Polyalphabetic substitution increases security over multiple simple alphabetic substitutions. True \ False Why?
 Combination of a transposition and a substitution result in unbreakable cypher. True \ False Why?
(15) Malicious users must have three things to succeed: motivation, opportunity, method. Consider the previous threat of cyber attacks against automobiles causing accidents. Give a brief example (1-2 sentences) for each MOM aspect. Motivation:
Opportunity:

Method:

	NUS question 5 points nat is the difference between security policy and security mechanism?
	20 points GRADUATE AND HONORS COLLEGE STUDENTS ONLY! What is the main purpose of using hash functions?
(15) A hash function is second-preimage resistant (weak collision resistant) if it is computationally infeasible to find any second input which has the same output as any specified input. Consider the message: Ann → Bob: E(M, KE-B) Sign(h(M), KD-A), where KE-B is Bob's public key, KD-A is Ann's private key, h(M) is the hash value of plain text M. Show how Eve can attack this message if the function h is not second-preimage resistant.