

Lecture 6

UNIX Development Tools

Software Development
Tools

Types of Development
Tools

• Compilation and building: make

• Managing files: RCS, SCCS, CVS

• Editors: vi, emacs

• Archiving: tar, cpio, pax, RPM

• Configuration: autoconf

• Debugging: gdb, dbx, prof, strace, purify

• Programming tools: yacc, lex, lint, indent

Make
(the awesome build system!)

Make

• make: A program for building and
maintaining computer programs
– developed at Bell Labs around 1978 by S.

Feldman (now at IBM)

• Instructions stored in a special format file
called a “makefile”.

Make Features

• Contains the build instructions for a project
– Automatically updates files based on a series of

dependency rules
– Supports multiple configurations for a project

• Only re-compiles necessary files after a change
(conditional compilation)
– Major time-saver for large projects
– Uses timestamps of the intermediate files

• Typical usage: executable is updated from object
files which are in turn compiled from source files

Compilation Phases

Component Input Output

preprocessor source code pre-processed
source code

compiler pre-processed
source code

assembly
source code

assembler assembly
source code object file

linker object files executable file

Dependency Graph

foo.c bar.c baz.c

foo.o bar.o baz.o

myprog

compile

link

generatedoriginal

Makefile Format

• Rule Syntax:

<target>: <dependency list>

 <command>

– The <target> is a list of files that the command will
generate

– The <dependency list> may be files and/or other
targets, and will be used to create the target

– It must be a tab before <command>, or it won’t work

– The first rule is the default <target> for make

Examples of Invoking
Make

• make -f makefile
• make target
• make

– looks for file makefile or Makefile in current
directory, picks first target listed in the
makefile

Make: Sequence of
Execution

• Make executes all commands associated
with target in makefile if one of these
conditions is satisfied:
– file target does not exist

– file target exists but one of the source files in
the dependency list has been modified more
recently than target

Example Makefile
Example Makefile
CC=g++
CFLAGS=-g –Wall -DDEBUG

foobar: foo.o bar.o
 $(CC) $(CFLAGS) –o foobar foo.o bar.o

foo.o: foo.cpp foo.h
 $(CC) $(CFLAGS) –c foo.cpp

bar.o: bar.cpp bar.h
 $(CC) $(CFLAGS) –c bar.cpp

clean:
 rm foo.o bar.o foobar

Make Power Features

• Many built-in rules
– e.g. C compilation

• “Fake” targets
– Targets that are not actually files
– Can do just about anything, not just compile
– Like the “clean” target

• Forcing re-compiles
– touch the required files
– touch the Makefile to rebuild everything

Make Patterns and
Variables

• Variables (macros):
– VAR = <rest of line> Set a variable
– $(VAR) Use a variable

• Suffix Rules
– .c.o: specifies a rule to build x.o from x.c
– Default:
 .c.o:

 $(CC) $(CFLAGS) -c $<

• Special:
– $@: target
– $<: dependency list
– $*: target with suffix deleted

Version Control

Version Control

• Provide the ability to store/access and protect all
of the versions of source code files

• Provides the following benefits:
– If program has multiple versions, it keeps track only of

differences between multiple versions.
– Multi-user support. Allows only one person at the time

to do the editing.
– Provides a way to look at the history of program

development.

Ancient Version Control
Systems

• SCCS: UNIX Source Code Control System
– Rochkind, Bell Labs, 1972.

• RCS: Revision Control System
– Tichy, Purdue, 1980s.

• CVS: Concurrent Versions System
– Grune, 1986, Berliner, 1989.

Modern Version Control
Systems

• SVN: Replaced CVS.
– Apache Foundation, 2000.

• Git: Popular alternative to SVN.
– Torvalds, Hamano, 2005.

• Mercurial: Flexible Git alternative.
– Mackall, 2005.

Archiving Tools

tar: Tape ARchiver

• tar: general purpose archive utility (not
just for tapes)
– Usage: tar [options] [files]
– Originally designed for maintaining an archive of files

on a magnetic tape.

– Now often used for packaging files for distribution

– If any files are subdirectories, tar acts on the entire
subtree.

tar: archiving files options

– c creates a tar-format file
– f filename specify filename for

tar-format file,
• Default is /dev/rmt0.

• If - is used for filename, standard input or standard
output is used as appropriate

– v verbose output
– x allows to extract named files

tar: archiving files (continued)

– t generates table of contents
– r unconditionally appends the

listed files to the archive files
– u appends only files that are more recent

than those already archived
– L follow symbolic links
– m do not restore file modification times
– l print error messages about links it

cannot find

cpio: copying files

• cpio: copy file archives in from or out of
tape or disk or to another location on the
local machine

• Similar to tar
• Examples:

– Extract: cpio -idtu [patterns]
– Create: cpio -ov
– Pass-thru: cpio -pl directory

cpio (continued)

•cpio -i [dtum] [patterns]
– Copy in (extract) files whose names match

selected patterns.
– If no pattern is used, all files are extracted
– During extraction, older files are not extracted

(unless -u option is used)
– Directories are not created unless –d is used
– Modification times not preserved with -m
– Print the table of contents: -t

cpio (continued)

• cpio -ov
• Copy out a list of files whose names are given on the

standard input. -v lists files processed.

• cpio -p [options] directory
• Copy files to another directory on the same system.

Destination pathnames are relative to the named
directory

• Example: To copy a directory tree:
– find . -depth -print | cpio -pdumv /mydir

pax: replacement for cpio
and tar

• Portable Archive eXchange format
• Part of POSIX
• Reads/writes cpio and tar formats
• Union of cpio and tar functionality
• Files can come from standard input or command line
• Sensible defaults

– pax –wf archive *.c
– pax –r < archive

Distributing Software

• Pieces typically distributed:
– Binaries

– Required runtime libraries

– Data files

– Man pages

– Documentation

– Header files

• Typically packaged in an archive:
– e.g., perl-solaris.tgz or perl-5.8.5-9.i386.rpm

Packaging Source:
autoconf

• Produces shell scripts that automatically configure
software to adapt to UNIX-like systems.
– Generates configuration script (configure)

• The configure script checks for:
– programs
– libraries
– header files
– typedefs
– structures
– compiler characteristics
– library functions
– system services

 and generates makefiles

Installing Software From
Tarballs

tar xzf <gzipped-tar-file>

cd <dist-dir>

./configure

make

make install

Debuggers
(and how to use them!)

Debugging

• The ideal:

Do it right the first time

• The reality:

Bugs happen

• The goal:

Exterminate, quickly and efficiently

Debuggers

• Advantages over the “old fashioned” way:
– you can step through code as it runs

– you don’t have to modify your code

– you can examine the entire state of the program
• call stack, variable values, scope, etc.

– you can modify values in the running program

– you can view the state of a crash using core files

Debuggers

• The GDB or DBX debuggers let you examine the
internal workings of your code while the program
runs.
– Debuggers allow you to set breakpoints to stop the

program's execution at a particular point of interest and
examine variables.

– To work with a debugger, you first have to recompile
the program with the proper debugging options.

– Use the -g command line parameter to cc, gcc, or CC
• Example: cc -g -c foo.c

Using the Debugger

• Two ways to use a debugger:
1. Run the debugger on your program, executing the

program from within the debugger and see what
happens

2. Post-mortem mode: program has crashed and core
dumped
• You often won't be able to find out exactly what happened,

but you usually get a stack trace.
• A stack trace shows the chain of function calls where the

program exited ungracefully
• Does not always pinpoint what caused the problem.

GDB, the GNU Debugger

• Text-based, invoked with:
gdb [<programfile> [<corefile>|<pid>]]

• Argument descriptions:
<programfile > executable program file
<corefile> core dump of program
<pid> process id of already running program

• Example:
gdb ./hello

• Compile <programfile> with –g for debug info

Basic GDB Commands
• General Commands:

file [<file>] selects <file> as the program to debug
run [<args>] runs selected program with arguments <args>
attach <pid> attach gdb to a running process <pid>
kill kills the process being debugged
quit quits the gdb program
help [<topic>] accesses the internal help documentation

• Stepping and Continuing:
c[ontinue] continue execution (after a stop)
s[tep] step one line, entering called functions
n[ext] step one line, without entering functions
finish finish the function and print the return value

GDB Breakpoints

• Useful breakpoint commands:
b[reak] [<where>] sets breakpoints. <where> can be

a number of things, including a hex
address, a function name, a line
number, or a relative line offset

[r]watch <expr> sets a watchpoint, which will break
when <expr> is written to [or read]

info break[points] prints out a listing of all breakpoints

clear [<where>] clears a breakpoint at <where>

d[elete] [<nums>] deletes breakpoints by number

Playing with Data in GDB

• Commands for looking around:
list [<where>] prints out source code at <where>
search <regexp> searches source code for <regexp>
backtrace [<n>] prints a backtrace <n> levels deep
info [<what>] prints out info on <what> (like

local variables or function args)
p[rint] [<expr>] prints out the evaluation of <expr>

• Commands for altering data and control path:
set <name> <expr> sets variables or arguments
return [<expr>] returns <expr> from current function
jump <where> jumps execution to <where>

Tracing System Calls
• Most operating systems contain a utility to

monitor system calls:
– Linux: strace, Solaris: truss, SGI: par

 27mS[1] : close(0) OK
 27mS[1] : open("try.in", O_RDONLY, 017777627464)
 29mS[1] : END-open() = 0
 29mS[1] : read(0, "1\n2\n|/bin/date\n3\n|/bin/sleep 2", 2048) = 31
 29mS[1] : read(0, 0x7fff26ef, 2017) = 0
 29mS[1] : getpagesize() = 16384
 29mS[1] : brk(0x1001c000) OK
 29mS[1] : time() = 1003207028
 29mS[1] : fork()
 31mS[1] : END-fork() = 1880277
 41mS[1] (1864078): was sent signal SIGCLD
 31mS[2] : waitsys(P_ALL, 0, 0x7fff2590, WTRAPPED|WEXITED, 0)
 42mS[2] : END-waitsys(P_ALL, 0, {signo=SIGCLD, errno=0,
code=CLD_EXITED, pid=1880277, status=0}, WTRAPPED|WEXITED, 0) = 0
 42mS[2] : time() = 1003207028

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

