
  

Lecture 5 (part 2)

Shell Part II:
sh, bash, ksh



  

Parsing and Quoting



  

How the Shell Parses

• Part 1: Read the command:
– Read one or more lines a needed

– Separate into tokens using space/tabs

– Form commands based on token types

• Part 2: Evaluate a command:
– Expand word tokens (command substitution, parameter 

expansion)

– Split words into fields

– Setup redirections, environment

– Run command with arguments



  

Useful Program for Testing

/ftproot/okeefe/215/showargs.c

#include <stdio.h>
int main(int argc, char *argv[])
{
  int i;
  for (i=0; i < argc; i++) {
    printf("Arg %d: %s\n", i, argv[i]);
  }
  return(0);
}



  

Shell Comments

• Comments begin with an unquoted #
• Comments end at the end of the line

• Comments can begin whenever a token begins

• Examples
# This is a comment

# and so is this

grep foo bar # this is a comment

grep foo bar# this is not a comment



  

Special Characters

• The shell processes the following characters specially 
unless quoted:

 | & ( ) < > ; " ' $ ` space tab newline

• The following are special whenever patterns are processed:
 * ? [ ]               (turn off with set -o noglob)

• The following are special at the beginning of a word:
 # ~

• The following are special when processing assignments:
 = [ ] 



  

Token Types

• The shell uses spaces and tabs to split the 
line or lines into the following types of 
tokens:
– Control operators  (|, ||)
– Redirection operators  (<, >, >>)
– Reserved words (while, if)
– Assignment tokens (foo=bar)
– Word tokens (everything else)



  

Operator Tokens

• Operator tokens are recognized everywhere unless 
quoted.  Spaces are optional before and after 
operator tokens.

• I/O Redirection Operators:
  > >> >| >& < << <<- <&

– Each I/O operator can be immediately preceded by a 
single digit

• Control Operators:
  | & ; ( ) || && ;;



  

Shell Quoting

• Quoting causes characters to loose special 
meaning.

• \ Unless quoted, \ causes next character to be 
quoted.  In front of new-line causes lines to be 
joined.

• '…' Literal quotes.  Cannot contain '
• "…" Removes special meaning of all characters 

except $, ", \ and `.  The \ is only special before 
one of these characters and new-line.



  

Quoting Examples

$ cat file*
a
b

$ cat "file*"
cat: file* not found

$ cat file1 > /dev/null
$ cat file1 ">" /dev/null
a
cat: >: cannot open

FILES="file1 file2"
$ cat "$FILES"
cat: file1 file2 not found



  

Simple Commands

• A simple command consists of three types of tokens:
– Assignments (must come first)
– Command word tokens (name and args)
– Redirections:  redirection-op + word-op
– The first token must not be a reserved word
– Command terminated by new-line or ;

• Example:
– foo=bar z=`date` 
print $HOME
x=foobar > q$$ $xyz z=3



  

Word Splitting

• After parameter expansion, command 
substitution, and arithmetic expansion, the 
characters that are generated as a result of 
these expansions (if not inside double 
quotes) are checked for split characters

• Default split character is space or tab
• Split characters are defined by the value of 

the IFS variable (IFS="" disables)



  

Word Splitting Examples
FILES="file1 file2"
cat $FILES
a
b

IFS=
cat $FILES
cat: file1 file2: cannot open

IFS=x v=exit
print exit $v "$v"
exit e it exit



  

Pathname Expansion

• After word splitting, each field that contains 
pattern characters is replaced by the 
pathnames that match

• Quoting prevents expansion
• set –o noglob disables

– Not in original Bourne shell, but in POSIX



  

Parsing Example
DATE=`date` echo $foo > \

/dev/null

DATE=`date` echo $foo > /dev/null
assignment word param redirection

echo hello there
/dev/null

/bin/echo  hello there
/dev/nullsplit by IFSPATH expansion



  

The eval built-in

• eval arg …
– Causes all the tokenizing and expansions to be 

performed again



  



  

Input/Output Shell Features

• Standard input, output, error
– Redirection
– Here documents
– Pipelines
– Command substitution

• Exit status
– $?
– &&, ||, if, while

• Environment
– export, variables

• Arguments
– Command substitution
– Variables
– Wildcards



  

Power of the Shell

• The shell is a language that lets you use programs 
as you would use procedures in other languages
– Called with command line arguments

– If used in if, while statements programs behave like 
functions returning a boolean value

• /bin/true: Program that just does exit(0)

• /bin/false: Program that just does exit(1)

– If used in command substitution, programs behave like 
functions returning a string

– Environment behaves like global variables



  

test Summary
• String based tests
-z string Length of string is 0
-n string Length of string is not 0
string1 = string2 Strings are identical
string1 != string2 Strings differ
string String is not NULL

• Numeric tests
int1 –eq int2 First int equal to second
int1 –ne int2 First int not equal to second
-gt, -ge, -lt, -le greater, greater/equal, less, less/equal

• File tests
-r file File exists and is readable
-w file File exists and is writable
-f file File is regular file
-d file File is directory
-s file file exists and is not empty

• Logic
! Negate result of expression
-a, -o and operator, or operator
( expr ) groups an expression



  

Example

#!/bin/sh

if test -f /tmp/stuff && \
   [ `wc –l < /tmp/stuff` -gt 10 ] 
then

echo "The file has more than 10 lines"
else

echo "The file is nonexistent or small"
fi



  

Arithmetic

• No arithmetic built in to /bin/sh
• Use external command /bin/expr
• expr expression 

– Evaluates expression and sends the result to 
standard output

– Yields a numeric or string result

expr 4 "*" 12

expr \( 4 + 3 \) \* 2



  

for loops

• Different than C:
for var in list

do
command
done

• Typically used with positional params or a list of files:
sum=0

for var in "$@"
do
 sum=`expr $sum + $var`
done

for file in *.c ; do echo "We have $file"
done



  

Case statement

• Like a C switch statement for strings:
– case $var in

opt1) command1
command2
;;

opt2) command
;;

*) command
;;

esac

• * is a catch all condition



  

Case Example
#!/bin/sh

echo "Say something."
while true
do
    read INPUT_STRING
    case $INPUT_STRING in
        hello)
            echo "Hello there."
            ;;
        bye)
            echo "See ya later."
            ;;
        *)
            echo "I'm sorry?"
            ;;
    esac
done
echo "Take care."



  

Case Options

• opt can be a shell pattern, or a list of shell 
patterns delimited by |

• Example:
case $name in
    *[0-9]*)
        echo "That doesn't seem like a name."
        ;;
    J*|K*)
        echo "Your name starts with J or K, cool."
        ;;
    *)
        echo "You're not special."
        ;;
esac



  

Types of Commands

All behave the same way

• Programs
– Most that are part of the OS in /bin

• Built-in commands

• Functions

• Aliases



  

Built-in Commands

• Built-in commands are internal to the shell 
and do not create a separate process.  
Commands are built-in because:
– They are intrinsic to the language (exit)

– They produce side effects on the process (cd)

– They perform much better
• No fork/exec



  

Important Built-in Commands

exec : replaces shell with program
cd : change working directory
shift : rearrange positional parameters
(un)set : set positional parameters
wait : wait for background proc. to exit
umask : change default file permissions
exit : quit the shell
eval : parse and execute string
time : run command and print times
export : put variable into environment
trap : set signal handlers



  

Important Built-in Commands

continue : continue in loop

break : break in loop

return : return from function

: : true

. : read file of commands into

current shell; like #include



  

Reading Lines

• read is used to read a line from a file and to 
store the result into shell variables
– read –r prevents special processing
– Uses IFS to split into words
– If no variable specified, uses REPLY

read
read –r NAME
read FIRSTNAME LASTNAME



  

trap command

• trap specifies command that should be executed 
when the shell receives a signal of a particular 
value.

• trap [ [command] {signal}+]
– If command is omitted, signals are ignored

• Especially useful for cleaning up temporary files

trap 'echo "please, dont interrupt!"' SIGINT

trap 'rm /tmp/tmpfile' EXIT



  

Functions

Functions are similar to scripts and other commands 
except that they can produce side effects in the 
callers script.  The positional parameters are saved 
and restored when invoking a function. Variables 
are shared between caller and callee.

Syntax:
name ()
{
commands
}



  

Aliases

• Like macros (#define in C)

• Shorter to define than functions, but more 
limited

• Not recommended for scripts

• Example:

alias rm='rm –i'



  

Search Rules

• Special built-ins

• Functions
– command bypasses search for functions

• Built-ins not associated with PATH

• PATH search

• Built-ins associated with PATH

• Executable images



  

Script Examples

• Rename files to lower case

• Strip CR from files

• Emit HTML for directory contents



  

Rename files

#!/bin/sh

for file in *
do
        lfile=`echo $file | tr A-Z a-z`
        if [ $file != $lfile ]
        then
                mv $file $lfile
        fi
done



  

Remove DOS Carriage Returns
#!/bin/sh

TMPFILE=/tmp/file$$

if [ "$1" = "" ]
then
        tr -d '\r'
        exit 0
fi
        
trap 'rm -f $TMPFILE' EXIT

for file in "$@"
do
        if tr -d '\r' < $file > $TMPFILE
        then
                mv $TMPFILE $file
        fi
done



  

$ dir2html.sh > dir.html

Generate HTML



  

The Script
#!/bin/sh

if test –n "$1"
then
  cd "$1"
fi
cat <<HUP
 <html>
 <h1> Directory listing for $PWD </h1>
 <table border=1>
 <tr>
HUP
num=0  # global variable counting file number
for file in *
do
    genhtml $file   # this function is on next 
page
done
cat <<HUP
 </tr>
 </table>
 </html>
HUP



  

Funciton genhtml
genhtml()
{
    file=$1
    echo "<td><tt>"
    if [ -f $file ]
    then    echo "<font color=blue>$file</font>"
    elif [ -d $file ]
    then    echo "<font color=red>$file</font>"
    else    echo "$file"
    fi
    echo "</tt></td>"
    # Check if this is the end of the row
    num=`expr $num + 1`
    if [ $num -gt 4 ]
    then
        echo "</tr><tr>"
        num=0
    fi
}



  

Korn Shell / bash Features



  

Command Substitution Syntax

• Better syntax with $(command)
– Allows nesting
– x=$(cat $(generate_file_list))

• Backward compatible with ` … ` notation



  

Expressions
• Expressions are built-in with the [[ ]] operator
if [[ $var = "" ]] …
• Gets around parsing issues when using /bin/test, allows 

checking strings against patterns
• Operations:

– string == pattern
– string != pattern
– string1 < string2
– file1 –nt file2
– file1 –ot file2
– file1 –ef file2
– &&, ||

• Patterns:
– Can be used to do string matching

if [[ $foo = *a* ]]

if [[ $foo = [abc]* ]]



  

Additonal Parameter Expansion

• ${#param} – Length of param
• ${param#pattern} – Left strip min pattern
• ${param##pattern} – Left strip max pattern
• ${param%pattern} – Right strip min pattern
• ${param%%pattern} – Right strip max pattern
• ${param-value} – Default value if param not set



  

Variables

• Variables can be arrays
– foo[3]=test
– echo ${foo[3]}

• Indexed by number
• ${#arr} is length of the array
• Multiple array elements can be set at once:

– set –A foo a b c d
– echo ${foo[1]}

Set command can also be used for positional params: set 
a b c d;  print $2



  

Functions

• Alternative function syntax:
function name {
 commands
}

• Allows for local variables (with typeset)
• $0 is set to the name of the function



  

Additional Features

•  Built-in arithmetic: Using $((expression ))
– e.g., print $(( 1 + 1 * 8 / x ))

•  Tilde file expansion

~ $HOME

~user home directory of user

~+ $PWD

~- $OLDPWD



  

Printing (ksh only)

• Built-in print command to replace echo

• Not subject to variations in echo

• Much faster
• Allows options:

-u# print to specific file descriptor



  

KornShell 93



  

Variable Attributes

• By default attributes hold strings of unlimited length
• Attributes can be set with typeset:

– readonly (-r) – cannot be changed
– export (-x) – value will be exported to env
– upper (-u) – letters will be converted to upper case
– lower (-l) – letters will be converted to lower case
– ljust (-L width) – left justify to given width
– rjust (-R width) – right justify to given width
– zfill (-Z width) – justify, fill with leading zeros
– integer (-I [base]) – value stored as integer

– float (-E [prec]) – value stored as C double
– nameref (-n) – a name reference



  

Name References

• A name reference is a type of variable that 
references another variable. 

• nameref is an alias for typeset -n
– Example:

    
user1="jeff"
user2="adam"
typeset –n name="user1"
print $name
jeff



  

New Parameter Expansion

• ${param/pattern/str} – Replace first pattern 
with str

• ${param//pattern/str} – Replace all patterns 
with str

• ${param:offset:len} – Substring



  

Patterns Extended

• Additional pattern 
types so that shell 
patterns are 
equally expressive 
as regular 
expressions

• Used for:
– file expansion

–  [[ ]]
– case statements

– parameter 
expansion

Patterns Regular Expressions



  

ANSI C Quoting

• $'…' Uses C escape sequences
$'\t'   $'Hello\nthere'

• printf added that supports C like printing:
printf "You have %d apples" $x

• Extensions
– %b – ANSI escape sequences
– %q – Quote argument for reinput
– \E – Escape character (033)
– %P – convert ERE to shell pattern
– %H – convert using HTML conventions
– %T – date conversions using date formats



  

Associative Arrays

• Arrays can be indexed by string, like awk

• Declared with typeset –A
• Set: name["foo"]="bar"
• Reference ${name["foo"]}
• Subscripts: ${!name[@]}



  

Coprocesses

• |& operator supports a simple form of concurrent 
processing

• cmd |&

cmd runs as a background process whose standard 
input and output channels are connected to the 
original parent shell via a two way pipe.

• Can read and write from process with
– read –p
– print –p

• Note that echo couldn’t be used.  Why?



  

C Expressions

• We have already seen built-in expressions with the [[ ]] 
operator:
– [[ $var = *foo* ]] && print "contains foo"

• New operator (( )) for C-like numeric expressions:
– (( x > 10 )) && print "x=$x, greater than 10"
– (( x ++ ))
– Note variables don't have to be used with $ inside parens

• Value of (( )) expression can be used
with $(( ))
– y=$(( x + 1 ))
– print $(( x * y - sin(y) ))



  

Compound Variables

• Variables can contain subfields (like 
structures or classes)

• Syntax: variable name containing .
• Example:
cust=(name=Jeff zip=10003)

cust.state=NY

print ${cust.name}

print ${!cust.*}



  

New for loop syntax

• Regular syntax:
   for var in list

do
   …
done

• Additional syntax like C:
for (( initialization; condition; increment ))
do

…
done

• Example:  for (( i=0; i < $VAR; i++))



  

Example: Word Count

#!/home/unixtool/bin/ksh

integer l=0 w=0 c=0
while read –r LINE
do

(( l++ ))
set -- $LINE
(( w += $# ))
(( c += ${#LINE}+1 ))

done < $1

print "$l lines, $w words, $c characters"



  

Example: Word Count

• integer tag indicates variables will be used as 
integers

• while loop is a command, so redirection works

integer l=0 w=0 c=0
while read –r LINE
do

(( l++ ))
set -- $LINE
(( w += $# ))
(( c += ${#LINE}+1 ))

done < $1

print "$l lines, $w words, $c characters"



  

Example: Word Count

• set -- $LINE turns LINE into positional 
parameters ($1, …), splitting up the value with IFS

• $# is the number of positional parameters

integer l=0 w=0 c=0
while read –r LINE
do

(( l++ ))
set -- $LINE
(( w += $# ))
(( c += ${#LINE}+1 ))

done < $1

print "$l lines, $w words, $c characters"



  

Example: Word Count

• ${#LINE} returns the length of the value of LINE
• We add 1 because the newline character is not part 

of LINE

integer l=0 w=0 c=0
while read –r LINE
do

(( l++ ))
set -- $LINE
(( w += $# ))
(( c += ${#LINE}+1 ))

done < $1

print "$l lines, $w words, $c characters"



  

Example: Spell a Phone Number

Given a number, finds possible words that the 
number spells on a telephone.

Example:
$ phonespell 8643
void



  

Algorithm

• Create function combo that prints all combinations of words.  
Check those against the dictionary.

• function combo is recursive:
– Pass in part of number, part of word spelled

combo 8643 ""

combo 643 t combo 643 u combo 643 v

combo 43 vm combo 43 vn combo 43 vo

combo "" void
…



  

Example: Spell a Phone Number

• functions defined in ksh take arguments as positional 
parameters, like commands

• typeset makes a variable local

function combo
{
        typeset num=$1 word=$2
        if      [[ $num = '' ]]
        then    print $word
        else    typeset -L1 digit=$num
                for letter in ${get_letter[digit]}
                do      combo "${num#?}" "$word$letter"
                done
        fi
}



  

Example: Spell a Phone Number

• End of recursion: If number is empty, just print the 
given word.  Should end up happening for every 
combination

function combo
{
        typeset num=$1 word=$2
        if      [[ $num = '' ]]
        then    print $word
        else    typeset -L1 digit=$num
                for letter in ${get_letter[digit]}
                do      combo "${num#?}" "$word$letter"
                done
        fi
}



  

Example: Spell a Phone Number

• Extract leftmost digit from num

function combo
{
        typeset num=$1 word=$2
        if      [[ $num = '' ]]
        then    print $word
        else    typeset -L1 digit=$num
                for letter in ${get_letter[digit]}
                do      combo "${num#?}" "$word$letter"
                done
        fi
}



  

Example: Spell a Phone Number

• for loop goes through all letters that correspond to the number 
(stored in get_letter array, shown next slide)

• Recursively calls itself for each letter, taking off one character 
from the left (using the # operator with pattern ?)

function combo
{
        typeset num=$1 word=$2
        if      [[ $num = '' ]]
        then    print $word
        else    typeset -L1 digit=$num
                for letter in ${get_letter[digit]}
                do      combo "${num#?}" "$word$letter"
                done
        fi
}



  

Spell a Phone Number (cont’)

• set –A arrayname value value ...
– sets elements of an array all at once

set -A get_letter o i "a b c" "d e f" "g h i" "j k l" \
        "m n o" "p r s" "t u v" "w x y"

# method 1
combo $1 | comm -12 /usr/dict/words -

# method 2
trap 'rm -f /tmp/full$$' EXIT
combo $1  > /tmp/full$$
spell < /tmp/full$$ | comm -13 - /tmp/full$$



  

Spell a Phone Number (cont’)

• Call function combo with first argument, pipe to comm
– suppress fields 1 and 2 (show only matching lines)
– combo emits sorted lines, and dictionary is sorted so 
comm works well

set -A get_letter o i "a b c" "d e f" "g h i" "j k l" \
        "m n o" "p r s" "t u v" "w x y"

# method 1
combo $1 | comm -12 /usr/dict/words -

# method 2
trap 'rm -f /tmp/full$$' EXIT
combo $1  > /tmp/full$$
spell < /tmp/full$$ | comm -13 - /tmp/full$$



  

Spell a Phone Number (cont’)

• Another method: use spell command
– Create temporary file storing combos
– Run through spell, generating list of misspelled words
– Pipe to comm, suppressing fields 1 and 3 (show correct words)

set -A get_letter o i "a b c" "d e f" "g h i" "j k l" \
        "m n o" "p r s" "t u v" "w x y"

# method 1
combo $1 | comm -12 /usr/dict/words -

# method 2
trap 'rm -f /tmp/full$$' EXIT
combo $1  > /tmp/full$$
spell < /tmp/full$$ | comm -13 - /tmp/full$$



  

Example: Mortgage Calculator
float rate=$1 principle=$2 payment
integer months years=$3

[[ $1 ]] || read -r 'rate?rate in per cent: '
[[ $2 ]] || read -r 'principle?principle: '
[[ $3 ]] || read -r 'years?years to amoritization: '

print "\n\n\tprinciple\t$principle"
print "\trate\t\t$rate"
print "\tamortization\t$years"

(( months = years*12 ))
(( rate /= 1200. ))
(( payment = (principle*rate)/(1.-pow(1.+rate,-months)) ))

• Declare variables
• Read in unspecified inputs



  

Example: Mortgage Calculator
float rate=$1 principle=$2 payment
integer months years=$3

[[ $1 ]] || read -r 'rate?rate in per cent: '
[[ $2 ]] || read -r 'principle?principle: '
[[ $3 ]] || read -r 'years?years to amortization: '

print "\n\n\tprinciple\t$principle"
print "\trate\t\t$rate"
print "\tamortization\t$years"

(( months = years*12 ))
(( rate /= 1200. ))
(( payment = (principle*rate)/(1.-pow(1.+rate,-months)) ))

• Initialize values
• Uses built-in arithmetic (pow, floating point /)



  

Example: Mortgage Calculator

printf "\tmonthly payment\t%8.2f\n\n" "$payment" 
print '\tYears   Balance'
print '\t======   ======='

for   (( months=0; principle > 0; months++))
do (( principle *= (1.+rate) ))
        (( principle -= payment ))

if      (( ((months+1)%12) == 0 ))
then    printf "\t%d\t%8.2f\n" months/12 "$principle"
fi

done

• Print table header
– Uses printf to format floating point number



  

Example: Mortgage Calculator

printf "\tmonthly payment\t%8.2f\n\n" "$payment" 
print '\tYears   Balance'
print '\t======   ======='

for   (( months=0; principle > 0; months++))
do (( principle *= (1.+rate) ))
        (( principle -= payment ))

if      (( ((months+1)%12) == 0 ))
then    printf "\t%d\t%8.2f\n" months/12 "$principle"
fi

done

• C-style for loop with numerical calculations



  

Documentation

• Web version of Learning the KornShell 
documents ksh93.  Good for learning ksh.

• Glass documents ksh88 and bash
• UNIX in a Nutshell has a chapter that is a 

great ksh93 reference.  Documents:
– Bourne shell compatible features
– ksh88 compatible features
– ksh93 features


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

