
  

Lecture 5 (part 2)

Shell Part II:
sh, bash, ksh



  

Parsing and Quoting



  

How the Shell Parses

• Part 1: Read the command:
– Read one or more lines a needed

– Separate into tokens using space/tabs

– Form commands based on token types

• Part 2: Evaluate a command:
– Expand word tokens (command substitution, parameter 

expansion)

– Split words into fields

– Setup redirections, environment

– Run command with arguments



  

Useful Program for Testing

/ftproot/okeefe/215/showargs.c

#include <stdio.h>
int main(int argc, char *argv[])
{
  int i;
  for (i=0; i < argc; i++) {
    printf("Arg %d: %s\n", i, argv[i]);
  }
  return(0);
}



  

Shell Comments

• Comments begin with an unquoted #
• Comments end at the end of the line

• Comments can begin whenever a token begins

• Examples
# This is a comment

# and so is this

grep foo bar # this is a comment

grep foo bar# this is not a comment



  

Special Characters

• The shell processes the following characters specially 
unless quoted:

 | & ( ) < > ; " ' $ ` space tab newline

• The following are special whenever patterns are processed:
 * ? [ ]               (turn off with set -o noglob)

• The following are special at the beginning of a word:
 # ~

• The following are special when processing assignments:
 = [ ] 



  

Token Types

• The shell uses spaces and tabs to split the 
line or lines into the following types of 
tokens:
– Control operators  (|, ||)
– Redirection operators  (<, >, >>)
– Reserved words (while, if)
– Assignment tokens (foo=bar)
– Word tokens (everything else)



  

Operator Tokens

• Operator tokens are recognized everywhere unless 
quoted.  Spaces are optional before and after 
operator tokens.

• I/O Redirection Operators:
  > >> >| >& < << <<- <&

– Each I/O operator can be immediately preceded by a 
single digit

• Control Operators:
  | & ; ( ) || && ;;



  

Shell Quoting

• Quoting causes characters to loose special 
meaning.

• \ Unless quoted, \ causes next character to be 
quoted.  In front of new-line causes lines to be 
joined.

• '…' Literal quotes.  Cannot contain '
• "…" Removes special meaning of all characters 

except $, ", \ and `.  The \ is only special before 
one of these characters and new-line.



  

Quoting Examples

$ cat file*
a
b

$ cat "file*"
cat: file* not found

$ cat file1 > /dev/null
$ cat file1 ">" /dev/null
a
cat: >: cannot open

FILES="file1 file2"
$ cat "$FILES"
cat: file1 file2 not found



  

Simple Commands

• A simple command consists of three types of tokens:
– Assignments (must come first)
– Command word tokens (name and args)
– Redirections:  redirection-op + word-op
– The first token must not be a reserved word
– Command terminated by new-line or ;

• Example:
– foo=bar z=`date` 
print $HOME
x=foobar > q$$ $xyz z=3



  

Word Splitting

• After parameter expansion, command 
substitution, and arithmetic expansion, the 
characters that are generated as a result of 
these expansions (if not inside double 
quotes) are checked for split characters

• Default split character is space or tab
• Split characters are defined by the value of 

the IFS variable (IFS="" disables)



  

Word Splitting Examples
FILES="file1 file2"
cat $FILES
a
b

IFS=
cat $FILES
cat: file1 file2: cannot open

IFS=x v=exit
print exit $v "$v"
exit e it exit



  

Pathname Expansion

• After word splitting, each field that contains 
pattern characters is replaced by the 
pathnames that match

• Quoting prevents expansion
• set –o noglob disables

– Not in original Bourne shell, but in POSIX



  

Parsing Example
DATE=`date` echo $foo > \

/dev/null

DATE=`date` echo $foo > /dev/null
assignment word param redirection

echo hello there
/dev/null

/bin/echo  hello there
/dev/nullsplit by IFSPATH expansion



  

The eval built-in

• eval arg …
– Causes all the tokenizing and expansions to be 

performed again



  



  

Input/Output Shell Features

• Standard input, output, error
– Redirection
– Here documents
– Pipelines
– Command substitution

• Exit status
– $?
– &&, ||, if, while

• Environment
– export, variables

• Arguments
– Command substitution
– Variables
– Wildcards



  

Power of the Shell

• The shell is a language that lets you use programs 
as you would use procedures in other languages
– Called with command line arguments

– If used in if, while statements programs behave like 
functions returning a boolean value

• /bin/true: Program that just does exit(0)

• /bin/false: Program that just does exit(1)

– If used in command substitution, programs behave like 
functions returning a string

– Environment behaves like global variables



  

test Summary
• String based tests
-z string Length of string is 0
-n string Length of string is not 0
string1 = string2 Strings are identical
string1 != string2 Strings differ
string String is not NULL

• Numeric tests
int1 –eq int2 First int equal to second
int1 –ne int2 First int not equal to second
-gt, -ge, -lt, -le greater, greater/equal, less, less/equal

• File tests
-r file File exists and is readable
-w file File exists and is writable
-f file File is regular file
-d file File is directory
-s file file exists and is not empty

• Logic
! Negate result of expression
-a, -o and operator, or operator
( expr ) groups an expression



  

Example

#!/bin/sh

if test -f /tmp/stuff && \
   [ `wc –l < /tmp/stuff` -gt 10 ] 
then

echo "The file has more than 10 lines"
else

echo "The file is nonexistent or small"
fi



  

Arithmetic

• No arithmetic built in to /bin/sh
• Use external command /bin/expr
• expr expression 

– Evaluates expression and sends the result to 
standard output

– Yields a numeric or string result

expr 4 "*" 12

expr \( 4 + 3 \) \* 2



  

for loops

• Different than C:
for var in list

do
command
done

• Typically used with positional params or a list of files:
sum=0

for var in "$@"
do
 sum=`expr $sum + $var`
done

for file in *.c ; do echo "We have $file"
done



  

Case statement

• Like a C switch statement for strings:
– case $var in

opt1) command1
command2
;;

opt2) command
;;

*) command
;;

esac

• * is a catch all condition



  

Case Example
#!/bin/sh

echo "Say something."
while true
do
    read INPUT_STRING
    case $INPUT_STRING in
        hello)
            echo "Hello there."
            ;;
        bye)
            echo "See ya later."
            ;;
        *)
            echo "I'm sorry?"
            ;;
    esac
done
echo "Take care."



  

Case Options

• opt can be a shell pattern, or a list of shell 
patterns delimited by |

• Example:
case $name in
    *[0-9]*)
        echo "That doesn't seem like a name."
        ;;
    J*|K*)
        echo "Your name starts with J or K, cool."
        ;;
    *)
        echo "You're not special."
        ;;
esac



  

Types of Commands

All behave the same way

• Programs
– Most that are part of the OS in /bin

• Built-in commands

• Functions

• Aliases



  

Built-in Commands

• Built-in commands are internal to the shell 
and do not create a separate process.  
Commands are built-in because:
– They are intrinsic to the language (exit)

– They produce side effects on the process (cd)

– They perform much better
• No fork/exec



  

Important Built-in Commands

exec : replaces shell with program
cd : change working directory
shift : rearrange positional parameters
(un)set : set positional parameters
wait : wait for background proc. to exit
umask : change default file permissions
exit : quit the shell
eval : parse and execute string
time : run command and print times
export : put variable into environment
trap : set signal handlers



  

Important Built-in Commands

continue : continue in loop

break : break in loop

return : return from function

: : true

. : read file of commands into

current shell; like #include



  

Reading Lines

• read is used to read a line from a file and to 
store the result into shell variables
– read –r prevents special processing
– Uses IFS to split into words
– If no variable specified, uses REPLY

read
read –r NAME
read FIRSTNAME LASTNAME



  

trap command

• trap specifies command that should be executed 
when the shell receives a signal of a particular 
value.

• trap [ [command] {signal}+]
– If command is omitted, signals are ignored

• Especially useful for cleaning up temporary files

trap 'echo "please, dont interrupt!"' SIGINT

trap 'rm /tmp/tmpfile' EXIT



  

Functions

Functions are similar to scripts and other commands 
except that they can produce side effects in the 
callers script.  The positional parameters are saved 
and restored when invoking a function. Variables 
are shared between caller and callee.

Syntax:
name ()
{
commands
}



  

Aliases

• Like macros (#define in C)

• Shorter to define than functions, but more 
limited

• Not recommended for scripts

• Example:

alias rm='rm –i'



  

Search Rules

• Special built-ins

• Functions
– command bypasses search for functions

• Built-ins not associated with PATH

• PATH search

• Built-ins associated with PATH

• Executable images



  

Script Examples

• Rename files to lower case

• Strip CR from files

• Emit HTML for directory contents



  

Rename files

#!/bin/sh

for file in *
do
        lfile=`echo $file | tr A-Z a-z`
        if [ $file != $lfile ]
        then
                mv $file $lfile
        fi
done



  

Remove DOS Carriage Returns
#!/bin/sh

TMPFILE=/tmp/file$$

if [ "$1" = "" ]
then
        tr -d '\r'
        exit 0
fi
        
trap 'rm -f $TMPFILE' EXIT

for file in "$@"
do
        if tr -d '\r' < $file > $TMPFILE
        then
                mv $TMPFILE $file
        fi
done



  

$ dir2html.sh > dir.html

Generate HTML



  

The Script
#!/bin/sh

if test –n "$1"
then
  cd "$1"
fi
cat <<HUP
 <html>
 <h1> Directory listing for $PWD </h1>
 <table border=1>
 <tr>
HUP
num=0  # global variable counting file number
for file in *
do
    genhtml $file   # this function is on next 
page
done
cat <<HUP
 </tr>
 </table>
 </html>
HUP



  

Funciton genhtml
genhtml()
{
    file=$1
    echo "<td><tt>"
    if [ -f $file ]
    then    echo "<font color=blue>$file</font>"
    elif [ -d $file ]
    then    echo "<font color=red>$file</font>"
    else    echo "$file"
    fi
    echo "</tt></td>"
    # Check if this is the end of the row
    num=`expr $num + 1`
    if [ $num -gt 4 ]
    then
        echo "</tr><tr>"
        num=0
    fi
}



  

Korn Shell / bash Features



  

Command Substitution Syntax

• Better syntax with $(command)
– Allows nesting
– x=$(cat $(generate_file_list))

• Backward compatible with ` … ` notation



  

Expressions
• Expressions are built-in with the [[ ]] operator
if [[ $var = "" ]] …
• Gets around parsing issues when using /bin/test, allows 

checking strings against patterns
• Operations:

– string == pattern
– string != pattern
– string1 < string2
– file1 –nt file2
– file1 –ot file2
– file1 –ef file2
– &&, ||

• Patterns:
– Can be used to do string matching

if [[ $foo = *a* ]]

if [[ $foo = [abc]* ]]



  

Additonal Parameter Expansion

• ${#param} – Length of param
• ${param#pattern} – Left strip min pattern
• ${param##pattern} – Left strip max pattern
• ${param%pattern} – Right strip min pattern
• ${param%%pattern} – Right strip max pattern
• ${param-value} – Default value if param not set



  

Variables

• Variables can be arrays
– foo[3]=test
– echo ${foo[3]}

• Indexed by number
• ${#arr} is length of the array
• Multiple array elements can be set at once:

– set –A foo a b c d
– echo ${foo[1]}

Set command can also be used for positional params: set 
a b c d;  print $2



  

Functions

• Alternative function syntax:
function name {
 commands
}

• Allows for local variables (with typeset)
• $0 is set to the name of the function



  

Additional Features

•  Built-in arithmetic: Using $((expression ))
– e.g., print $(( 1 + 1 * 8 / x ))

•  Tilde file expansion

~ $HOME

~user home directory of user

~+ $PWD

~- $OLDPWD



  

Printing (ksh only)

• Built-in print command to replace echo

• Not subject to variations in echo

• Much faster
• Allows options:

-u# print to specific file descriptor



  

KornShell 93



  

Variable Attributes

• By default attributes hold strings of unlimited length
• Attributes can be set with typeset:

– readonly (-r) – cannot be changed
– export (-x) – value will be exported to env
– upper (-u) – letters will be converted to upper case
– lower (-l) – letters will be converted to lower case
– ljust (-L width) – left justify to given width
– rjust (-R width) – right justify to given width
– zfill (-Z width) – justify, fill with leading zeros
– integer (-I [base]) – value stored as integer

– float (-E [prec]) – value stored as C double
– nameref (-n) – a name reference



  

Name References

• A name reference is a type of variable that 
references another variable. 

• nameref is an alias for typeset -n
– Example:

    
user1="jeff"
user2="adam"
typeset –n name="user1"
print $name
jeff



  

New Parameter Expansion

• ${param/pattern/str} – Replace first pattern 
with str

• ${param//pattern/str} – Replace all patterns 
with str

• ${param:offset:len} – Substring



  

Patterns Extended

• Additional pattern 
types so that shell 
patterns are 
equally expressive 
as regular 
expressions

• Used for:
– file expansion

–  [[ ]]
– case statements

– parameter 
expansion

Patterns Regular Expressions



  

ANSI C Quoting

• $'…' Uses C escape sequences
$'\t'   $'Hello\nthere'

• printf added that supports C like printing:
printf "You have %d apples" $x

• Extensions
– %b – ANSI escape sequences
– %q – Quote argument for reinput
– \E – Escape character (033)
– %P – convert ERE to shell pattern
– %H – convert using HTML conventions
– %T – date conversions using date formats



  

Associative Arrays

• Arrays can be indexed by string, like awk

• Declared with typeset –A
• Set: name["foo"]="bar"
• Reference ${name["foo"]}
• Subscripts: ${!name[@]}



  

Coprocesses

• |& operator supports a simple form of concurrent 
processing

• cmd |&

cmd runs as a background process whose standard 
input and output channels are connected to the 
original parent shell via a two way pipe.

• Can read and write from process with
– read –p
– print –p

• Note that echo couldn’t be used.  Why?



  

C Expressions

• We have already seen built-in expressions with the [[ ]] 
operator:
– [[ $var = *foo* ]] && print "contains foo"

• New operator (( )) for C-like numeric expressions:
– (( x > 10 )) && print "x=$x, greater than 10"
– (( x ++ ))
– Note variables don't have to be used with $ inside parens

• Value of (( )) expression can be used
with $(( ))
– y=$(( x + 1 ))
– print $(( x * y - sin(y) ))



  

Compound Variables

• Variables can contain subfields (like 
structures or classes)

• Syntax: variable name containing .
• Example:
cust=(name=Jeff zip=10003)

cust.state=NY

print ${cust.name}

print ${!cust.*}



  

New for loop syntax

• Regular syntax:
   for var in list

do
   …
done

• Additional syntax like C:
for (( initialization; condition; increment ))
do

…
done

• Example:  for (( i=0; i < $VAR; i++))



  

Example: Word Count

#!/home/unixtool/bin/ksh

integer l=0 w=0 c=0
while read –r LINE
do

(( l++ ))
set -- $LINE
(( w += $# ))
(( c += ${#LINE}+1 ))

done < $1

print "$l lines, $w words, $c characters"



  

Example: Word Count

• integer tag indicates variables will be used as 
integers

• while loop is a command, so redirection works

integer l=0 w=0 c=0
while read –r LINE
do

(( l++ ))
set -- $LINE
(( w += $# ))
(( c += ${#LINE}+1 ))

done < $1

print "$l lines, $w words, $c characters"



  

Example: Word Count

• set -- $LINE turns LINE into positional 
parameters ($1, …), splitting up the value with IFS

• $# is the number of positional parameters

integer l=0 w=0 c=0
while read –r LINE
do

(( l++ ))
set -- $LINE
(( w += $# ))
(( c += ${#LINE}+1 ))

done < $1

print "$l lines, $w words, $c characters"



  

Example: Word Count

• ${#LINE} returns the length of the value of LINE
• We add 1 because the newline character is not part 

of LINE

integer l=0 w=0 c=0
while read –r LINE
do

(( l++ ))
set -- $LINE
(( w += $# ))
(( c += ${#LINE}+1 ))

done < $1

print "$l lines, $w words, $c characters"



  

Example: Spell a Phone Number

Given a number, finds possible words that the 
number spells on a telephone.

Example:
$ phonespell 8643
void



  

Algorithm

• Create function combo that prints all combinations of words.  
Check those against the dictionary.

• function combo is recursive:
– Pass in part of number, part of word spelled

combo 8643 ""

combo 643 t combo 643 u combo 643 v

combo 43 vm combo 43 vn combo 43 vo

combo "" void
…



  

Example: Spell a Phone Number

• functions defined in ksh take arguments as positional 
parameters, like commands

• typeset makes a variable local

function combo
{
        typeset num=$1 word=$2
        if      [[ $num = '' ]]
        then    print $word
        else    typeset -L1 digit=$num
                for letter in ${get_letter[digit]}
                do      combo "${num#?}" "$word$letter"
                done
        fi
}



  

Example: Spell a Phone Number

• End of recursion: If number is empty, just print the 
given word.  Should end up happening for every 
combination

function combo
{
        typeset num=$1 word=$2
        if      [[ $num = '' ]]
        then    print $word
        else    typeset -L1 digit=$num
                for letter in ${get_letter[digit]}
                do      combo "${num#?}" "$word$letter"
                done
        fi
}



  

Example: Spell a Phone Number

• Extract leftmost digit from num

function combo
{
        typeset num=$1 word=$2
        if      [[ $num = '' ]]
        then    print $word
        else    typeset -L1 digit=$num
                for letter in ${get_letter[digit]}
                do      combo "${num#?}" "$word$letter"
                done
        fi
}



  

Example: Spell a Phone Number

• for loop goes through all letters that correspond to the number 
(stored in get_letter array, shown next slide)

• Recursively calls itself for each letter, taking off one character 
from the left (using the # operator with pattern ?)

function combo
{
        typeset num=$1 word=$2
        if      [[ $num = '' ]]
        then    print $word
        else    typeset -L1 digit=$num
                for letter in ${get_letter[digit]}
                do      combo "${num#?}" "$word$letter"
                done
        fi
}



  

Spell a Phone Number (cont’)

• set –A arrayname value value ...
– sets elements of an array all at once

set -A get_letter o i "a b c" "d e f" "g h i" "j k l" \
        "m n o" "p r s" "t u v" "w x y"

# method 1
combo $1 | comm -12 /usr/dict/words -

# method 2
trap 'rm -f /tmp/full$$' EXIT
combo $1  > /tmp/full$$
spell < /tmp/full$$ | comm -13 - /tmp/full$$



  

Spell a Phone Number (cont’)

• Call function combo with first argument, pipe to comm
– suppress fields 1 and 2 (show only matching lines)
– combo emits sorted lines, and dictionary is sorted so 
comm works well

set -A get_letter o i "a b c" "d e f" "g h i" "j k l" \
        "m n o" "p r s" "t u v" "w x y"

# method 1
combo $1 | comm -12 /usr/dict/words -

# method 2
trap 'rm -f /tmp/full$$' EXIT
combo $1  > /tmp/full$$
spell < /tmp/full$$ | comm -13 - /tmp/full$$



  

Spell a Phone Number (cont’)

• Another method: use spell command
– Create temporary file storing combos
– Run through spell, generating list of misspelled words
– Pipe to comm, suppressing fields 1 and 3 (show correct words)

set -A get_letter o i "a b c" "d e f" "g h i" "j k l" \
        "m n o" "p r s" "t u v" "w x y"

# method 1
combo $1 | comm -12 /usr/dict/words -

# method 2
trap 'rm -f /tmp/full$$' EXIT
combo $1  > /tmp/full$$
spell < /tmp/full$$ | comm -13 - /tmp/full$$



  

Example: Mortgage Calculator
float rate=$1 principle=$2 payment
integer months years=$3

[[ $1 ]] || read -r 'rate?rate in per cent: '
[[ $2 ]] || read -r 'principle?principle: '
[[ $3 ]] || read -r 'years?years to amoritization: '

print "\n\n\tprinciple\t$principle"
print "\trate\t\t$rate"
print "\tamortization\t$years"

(( months = years*12 ))
(( rate /= 1200. ))
(( payment = (principle*rate)/(1.-pow(1.+rate,-months)) ))

• Declare variables
• Read in unspecified inputs



  

Example: Mortgage Calculator
float rate=$1 principle=$2 payment
integer months years=$3

[[ $1 ]] || read -r 'rate?rate in per cent: '
[[ $2 ]] || read -r 'principle?principle: '
[[ $3 ]] || read -r 'years?years to amortization: '

print "\n\n\tprinciple\t$principle"
print "\trate\t\t$rate"
print "\tamortization\t$years"

(( months = years*12 ))
(( rate /= 1200. ))
(( payment = (principle*rate)/(1.-pow(1.+rate,-months)) ))

• Initialize values
• Uses built-in arithmetic (pow, floating point /)



  

Example: Mortgage Calculator

printf "\tmonthly payment\t%8.2f\n\n" "$payment" 
print '\tYears   Balance'
print '\t======   ======='

for   (( months=0; principle > 0; months++))
do (( principle *= (1.+rate) ))
        (( principle -= payment ))

if      (( ((months+1)%12) == 0 ))
then    printf "\t%d\t%8.2f\n" months/12 "$principle"
fi

done

• Print table header
– Uses printf to format floating point number



  

Example: Mortgage Calculator

printf "\tmonthly payment\t%8.2f\n\n" "$payment" 
print '\tYears   Balance'
print '\t======   ======='

for   (( months=0; principle > 0; months++))
do (( principle *= (1.+rate) ))
        (( principle -= payment ))

if      (( ((months+1)%12) == 0 ))
then    printf "\t%d\t%8.2f\n" months/12 "$principle"
fi

done

• C-style for loop with numerical calculations



  

Documentation

• Web version of Learning the KornShell 
documents ksh93.  Good for learning ksh.

• Glass documents ksh88 and bash
• UNIX in a Nutshell has a chapter that is a 

great ksh93 reference.  Documents:
– Bourne shell compatible features
– ksh88 compatible features
– ksh93 features
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