
  

Lecture 5

Shell Scripting



  

What is a shell?

• The user interface to the operating system
• Functionality:

– Execute other programs
– Manage files
– Manage processes

• Full programming language
• A program like any other

– This is why there are so many shells



  

Shell History

• There are 
many choices 
for shells

• Shell features 
evolved as 
UNIX grew



  

Shell Scripts

• A shell script is a regular text file that contains 
shell or UNIX commands
– Before running it, it must have execute 

permission:
•chmod +x filename

• A script can be invoked as:
– ksh name [ arg … ]
– ksh < name [ args … ]
– name [ arg …]



  

Shell Scripts
• When a script is run, the kernel determines which 

shell it is written for by examining the first line of 
the script

– If 1st line starts with #!pathname-of-shell, 
then it invokes pathname and sends the script as 
an argument to be interpreted

– If #! is not specified, the current shell assumes it 
is a script in its own language

• leads to problems



  

Simple Example

#!/bin/sh

echo Hello World



  

Scripting vs. C Programming

• Advantages of shell scripts
– Easy to work with other programs
– Easy to work with files
– Easy to work with strings
– Great for prototyping.  No compilation

• Disadvantages of shell scripts
– Slow
– Not well suited for algorithms & data structures



  

The C Shell

• C-like syntax (uses { }'s)
• Inadequate for scripting

– Poor control over file descriptors
– Can't mix flow control and commands
– Difficult quoting "I say \"hello\"" doesn't work
– Can only trap SIGINT

• Survives mostly because of interactive features.
– Job control
– Command history
– Command line editing, with arrow keys (tcsh)



  

The Bourne Shell

• Slight differences on various systems

• Evolved into standardized POSIX shell

• Scripts will also run with ksh, bash

• Influenced by ALGOL



  

Simple Commands

• simple command: sequence of non blanks 
arguments separated by blanks or tabs.

• 1st argument (numbered zero) usually specifies 
the name of the command to be executed.

• Any remaining arguments:
– Are passed as arguments to that command.

– Arguments may be filenames, pathnames, directories or 
special options

ls –l /
/bin/ls
-l
/



  

Complex Commands

• The shell's power is in its ability to hook 
commands together

• We've seen one example of this so far with 
pipelines:

• We will see others

cut –d: -f2 /etc/passwd | sort | uniq



  

Redirection of input/ouput

• Redirection of output: >
– example:$ ls -l > my_files

• Redirection of input:  <
– example: $ cat <input.data

• Append output: >>
– example: $ date >> logfile

• Arbitrary file descriptor redirection: fd>
– example: $ ls –l 2> error_log



  

Multiple Redirection

• cmd 2>file
– send standard error to file
– standard output remains the same

• cmd > file 2>&1
–  send both standard error and standard output to file

• cmd > file1 2>file2
– send standard output to file1
– send standard error to file2



  

Here Documents
• Shell provides alternative ways of supplying 

standard input to commands (an anonymous file)
• Shell allows in-line input redirection using << 

called here documents
• format
command [arg(s)] << arbitrary-delimiter
command input
 :
 :
arbitrary-delimiter
• arbitrary-delimiter should be a string that does 

not appear in text



  

Here Document Example

#!/bin/sh

mail steinbrenner@yankees.com <<EOT
  You guys really blew it in
  yesterday.  Good luck tomorrow.
  Yours,
  $USER
  EOT



  

Shell Variables

• Write

name=value

• Read:  $var

• Turn local variable into environment:

    export variable



  

Variable Example

#!/bin/sh

MESSAGE="Hello World"
echo $MESSAGE



  

Environmental Variables

NAME MEANING
$HOME Absolute pathname of your home directory

$PATH A list of directories to search for

$MAIL Absolute pathname to mailbox

$USER Your login name

$SHELL Absolute pathname of login shell

$TERM Type of your terminal

$PS1 Prompt



  

Parameters

• A parameter is one of the following:
– A variable
– A positional parameter, starting at 1 (next slide)
– A special parameter

• To get the value of a parameter: ${param}
– Can be part of a word  (abc${foo}def)
– Works in double quotes

• The {} can be omitted for simple variables, special 
parameters, and single digit positional parameters.



  

Positional Parameters

• The arguments to a shell script
– $1, $2, $3 …

• The arguments to a shell function
• Arguments to the set built-in command

– set this is a test
• $1=this, $2=is, $3=a, $4=test

• Manipulated with shift
– shift 2

• $1=a, $2=test

• Parameter 0 is the name of the shell or the shell script.



  

Example with Parameters

#!/bin/sh

# Parameter 1: word
# Parameter 2: file
grep $1 $2 | wc –l

$ countlines ing /usr/dict/words
3277



  

Special Parameters

• $# Number of positional parameters
• $-           Options currently in effect
• $? Exit value of last executed command
• $$ Process number of current process
• $! Process number of background process
• $* All arguments on command line
• "$@" All arguments on command line 

individually quoted "$1" "$2" ...



  

Command Substitution

• Used to turn the output of a command into a string

• Used to create arguments or variables

• Command is placed with grave accents ` ` to 
capture the output of command

$ date
Wed Sep 25 14:40:56 EDT 2001
$ NOW=`date`

$ sed "s/oldtext/`ls | head -1`/g"

$ PATH=`myscript`:$PATH
$ grep `generate_regexp` myfile.c



  

File name expansion

• Wildcards (patterns)

* matches any string of characters

? matches any single character

[list] matches any character in list

[lower-upper] matches any character in range 
lower-upper inclusive

[!list] matches any character not in list



  

File Expansion

• If multiple matches, all are returned
and treated as separate arguments:

• Handled by the shell (exec never sees the wildcards)
– argv[0]: /bin/cat

– argv[1]: file1

– argv[2]: file2

$ /bin/ls
file1 file2
$ cat file1
a
$ cat file2
b
$ cat file*
a
b

NOT
– argv[0]: /bin/cat

– argv[1]: file*



  

Compound Commands

• Multiple commands
– Separated by semicolon

• Command groupings
– pipelines

• Boolean operators
• Subshell

– ( command1; command2 ) > file

• Control structures



  

Boolean Operators

• Exit value of a program (exit system call) is a number
– 0 means success

– anything else is a failure code

• cmd1 && cmd2
– executes cmd2 if cmd1 is successful

• cmd1 || cmd2
– executes cmd2 if cmd1 is not successful

$ ls bad_file > /dev/null && date
$ ls bad_file > /dev/null || date
Wed Sep 26 07:43:23 2001



  

Control Structures

if expression
then

command1
else

command2
fi



  

What is an expression?

• Any UNIX command.  Evaluates to true if the exit 
code is 0, false if the exit code > 0

• Special command /bin/test exists that does most 
common expressions
– String compare
– Numeric comparison
– Check file properties

• /bin/[ is linked to /bin/test for syntactic 
sugar

• Good example UNIX tools working together



  

Examples
if test "$USER" = "kornj"
then

echo "I hate you"
else

echo "I like you"
fi

if [ -f /tmp/stuff ] && [ `wc –l < /tmp/stuff` -gt 10 ] 

then
echo "The file has more than 10 lines in it"

else
echo "The file is nonexistent or small"

fi



  

test Summary
• String based tests
-z string Length of string is 0
-n string Length of string is not 0
string1 = string2 Strings are identical
string1 != string2 Strings differ
string String is not NULL

• Numeric tests
int1 –eq int2 First int equal to second
int1 –ne int2 First int not equal to second
-gt, -ge, -lt, -le greater, greater/equal, less, less/equal

• File tests
-r file File exists and is readable
-w file File exists and is writable
-f file File is regular file
-d file File is directory
-s file file exists and is not empty

• Logic
! Negate result of expression
-a, -o and operator, or operator
( expr ) groups an expression



  

Control Structures Summary

•if … then … fi
•while … done
•until … do … done
•for … do … done
•case … in … esac
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