

Lecture 5

Shell Scripting

What is a shell?

• The user interface to the operating system
• Functionality:

– Execute other programs
– Manage files
– Manage processes

• Full programming language
• A program like any other

– This is why there are so many shells

Shell History

• There are
many choices
for shells

• Shell features
evolved as
UNIX grew

Shell Scripts

• A shell script is a regular text file that contains
shell or UNIX commands
– Before running it, it must have execute

permission:
•chmod +x filename

• A script can be invoked as:
– ksh name [arg …]
– ksh < name [args …]
– name [arg …]

Shell Scripts
• When a script is run, the kernel determines which

shell it is written for by examining the first line of
the script

– If 1st line starts with #!pathname-of-shell,
then it invokes pathname and sends the script as
an argument to be interpreted

– If #! is not specified, the current shell assumes it
is a script in its own language

• leads to problems

Simple Example

#!/bin/sh

echo Hello World

Scripting vs. C Programming

• Advantages of shell scripts
– Easy to work with other programs
– Easy to work with files
– Easy to work with strings
– Great for prototyping. No compilation

• Disadvantages of shell scripts
– Slow
– Not well suited for algorithms & data structures

The C Shell

• C-like syntax (uses { }'s)
• Inadequate for scripting

– Poor control over file descriptors
– Can't mix flow control and commands
– Difficult quoting "I say \"hello\"" doesn't work
– Can only trap SIGINT

• Survives mostly because of interactive features.
– Job control
– Command history
– Command line editing, with arrow keys (tcsh)

The Bourne Shell

• Slight differences on various systems

• Evolved into standardized POSIX shell

• Scripts will also run with ksh, bash

• Influenced by ALGOL

Simple Commands

• simple command: sequence of non blanks
arguments separated by blanks or tabs.

• 1st argument (numbered zero) usually specifies
the name of the command to be executed.

• Any remaining arguments:
– Are passed as arguments to that command.

– Arguments may be filenames, pathnames, directories or
special options

ls –l /
/bin/ls
-l
/

Complex Commands

• The shell's power is in its ability to hook
commands together

• We've seen one example of this so far with
pipelines:

• We will see others

cut –d: -f2 /etc/passwd | sort | uniq

Redirection of input/ouput

• Redirection of output: >
– example:$ ls -l > my_files

• Redirection of input: <
– example: $ cat <input.data

• Append output: >>
– example: $ date >> logfile

• Arbitrary file descriptor redirection: fd>
– example: $ ls –l 2> error_log

Multiple Redirection

• cmd 2>file
– send standard error to file
– standard output remains the same

• cmd > file 2>&1
– send both standard error and standard output to file

• cmd > file1 2>file2
– send standard output to file1
– send standard error to file2

Here Documents
• Shell provides alternative ways of supplying

standard input to commands (an anonymous file)
• Shell allows in-line input redirection using <<

called here documents
• format
command [arg(s)] << arbitrary-delimiter
command input
 :
 :
arbitrary-delimiter
• arbitrary-delimiter should be a string that does

not appear in text

Here Document Example

#!/bin/sh

mail steinbrenner@yankees.com <<EOT
 You guys really blew it in
 yesterday. Good luck tomorrow.
 Yours,
 $USER
 EOT

Shell Variables

• Write

name=value

• Read: $var

• Turn local variable into environment:

 export variable

Variable Example

#!/bin/sh

MESSAGE="Hello World"
echo $MESSAGE

Environmental Variables

NAME MEANING
$HOME Absolute pathname of your home directory

$PATH A list of directories to search for

$MAIL Absolute pathname to mailbox

$USER Your login name

$SHELL Absolute pathname of login shell

$TERM Type of your terminal

$PS1 Prompt

Parameters

• A parameter is one of the following:
– A variable
– A positional parameter, starting at 1 (next slide)
– A special parameter

• To get the value of a parameter: ${param}
– Can be part of a word (abc${foo}def)
– Works in double quotes

• The {} can be omitted for simple variables, special
parameters, and single digit positional parameters.

Positional Parameters

• The arguments to a shell script
– $1, $2, $3 …

• The arguments to a shell function
• Arguments to the set built-in command

– set this is a test
• $1=this, $2=is, $3=a, $4=test

• Manipulated with shift
– shift 2

• $1=a, $2=test

• Parameter 0 is the name of the shell or the shell script.

Example with Parameters

#!/bin/sh

Parameter 1: word
Parameter 2: file
grep $1 $2 | wc –l

$ countlines ing /usr/dict/words
3277

Special Parameters

• $# Number of positional parameters
• $- Options currently in effect
• $? Exit value of last executed command
• $$ Process number of current process
• $! Process number of background process
• $* All arguments on command line
• "$@" All arguments on command line

individually quoted "$1" "$2" ...

Command Substitution

• Used to turn the output of a command into a string

• Used to create arguments or variables

• Command is placed with grave accents ` ` to
capture the output of command

$ date
Wed Sep 25 14:40:56 EDT 2001
$ NOW=`date`

$ sed "s/oldtext/`ls | head -1`/g"

$ PATH=`myscript`:$PATH
$ grep `generate_regexp` myfile.c

File name expansion

• Wildcards (patterns)

* matches any string of characters

? matches any single character

[list] matches any character in list

[lower-upper] matches any character in range
lower-upper inclusive

[!list] matches any character not in list

File Expansion

• If multiple matches, all are returned
and treated as separate arguments:

• Handled by the shell (exec never sees the wildcards)
– argv[0]: /bin/cat

– argv[1]: file1

– argv[2]: file2

$ /bin/ls
file1 file2
$ cat file1
a
$ cat file2
b
$ cat file*
a
b

NOT
– argv[0]: /bin/cat

– argv[1]: file*

Compound Commands

• Multiple commands
– Separated by semicolon

• Command groupings
– pipelines

• Boolean operators
• Subshell

– (command1; command2) > file

• Control structures

Boolean Operators

• Exit value of a program (exit system call) is a number
– 0 means success

– anything else is a failure code

• cmd1 && cmd2
– executes cmd2 if cmd1 is successful

• cmd1 || cmd2
– executes cmd2 if cmd1 is not successful

$ ls bad_file > /dev/null && date
$ ls bad_file > /dev/null || date
Wed Sep 26 07:43:23 2001

Control Structures

if expression
then

command1
else

command2
fi

What is an expression?

• Any UNIX command. Evaluates to true if the exit
code is 0, false if the exit code > 0

• Special command /bin/test exists that does most
common expressions
– String compare
– Numeric comparison
– Check file properties

• /bin/[is linked to /bin/test for syntactic
sugar

• Good example UNIX tools working together

Examples
if test "$USER" = "kornj"
then

echo "I hate you"
else

echo "I like you"
fi

if [-f /tmp/stuff] && [`wc –l < /tmp/stuff` -gt 10]

then
echo "The file has more than 10 lines in it"

else
echo "The file is nonexistent or small"

fi

test Summary
• String based tests
-z string Length of string is 0
-n string Length of string is not 0
string1 = string2 Strings are identical
string1 != string2 Strings differ
string String is not NULL

• Numeric tests
int1 –eq int2 First int equal to second
int1 –ne int2 First int not equal to second
-gt, -ge, -lt, -le greater, greater/equal, less, less/equal

• File tests
-r file File exists and is readable
-w file File exists and is writable
-f file File is regular file
-d file File is directory
-s file file exists and is not empty

• Logic
! Negate result of expression
-a, -o and operator, or operator
(expr) groups an expression

Control Structures Summary

•if … then … fi
•while … done
•until … do … done
•for … do … done
•case … in … esac

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

