
  

Lecture 4

Regular Expressions:

grep, sed and awk



  

Previously

• Basic UNIX Commands
– Files: rm, cp, mv, ls
– Processes: ps, kill

• Unix Filters
– cat, head, tail, tee, wc
– cut, paste
– find
– sort, uniq



  

Today

• Regular Expressions
– Allow you to search for text in files
– grep command

• Stream manipulation:
– sed
– awk?

• But first, one command we didn’t cover last time…



  

tr: TRanslate Characters
• Copies standard input to standard output with 

substitution or deletion of selected characters

• Syntax: tr [ -cds ] [ string1 ] [ string2 ]
• -d delete all input characters contained in string1
• -c complements the characters in string1 with respect

 to the entire ASCII character set
• -s squeeze all strings of repeated output characters

that are in string2 to single characters



  

tr (continued)
• tr reads from standard input. 

– Any character that does not match a character in string1 
is passed to standard output unchanged

– Any character that does match a character in string1 is 
translated into the corresponding character in string2 
and then passed to standard output

• Examples
– tr s z replaces all instances of s with z
– tr so zx replaces all instances of s with z and o 

with x
– tr a-z A-Z replaces all lower case characters with 

upper case characters
– tr –d a-c deletes all a-c characters



  

tr uses

• Change delimiter
tr ‘|’ ‘:’

• Rewrite numbers
tr ,. .,

• Import DOS files
tr –d ’\r’ < dos_file

• Find ASCII in a binary file
tr –cd ’\n[a-zA-Z0-9 ]’ < binary_file



  

Regular Expressions



  

What Is a Regular Expression?

• A regular expression (regex) describes a set of 
possible input strings.

• Regular expressions descend from a fundamental 
concept in Computer Science called finite 
automata theory

• Regular expressions are endemic to Unix
– vi, ed, sed, and emacs
– awk, tcl, perl and Python
– grep, egrep, fgrep
– compilers



  

Regular Expressions

• The simplest regular expressions are a 
string of literal characters to match.

• The string matches the regular expression if 
it contains the substring.



  

UNIX Tools rocks.

match

UNIX Tools sucks.

match

UNIX Tools is okay.
no match

regular expression c k s



  

Regular Expressions

• A regular expression can match a string in 
more than one place.

Scrapple from the apple.

match 1 match 2

regular expression a p p l e



  

Regular Expressions

• The . regular expression can be used to 
match any character.

For me to poop on.

match 1 match 2

regular expression o .  
 



  

Character Classes

• Character classes [] can be used to match 
any specific set of characters.

beat a brat on a boat

match 1 match 2

regular expression b [eor] a t  

match 3



  

Negated Character Classes

• Character classes can be negated with the 
[^] syntax.

beat a brat on a boat

match

regular expression b [^eo] a t  



  

More About Character Classes
– [aeiou] will match any of the characters a, e, i, o, 

or u
– [kK]orn will match korn or Korn

• Ranges can also be specified in character classes
– [1-9] is the same as [123456789]
– [abcde] is equivalent to [a-e]
– You can also combine multiple ranges

•[abcde123456789] is equivalent to [a-e1-9]
– Note that the - character has a special meaning in a 

character class but only if it is used within a range,
[-123] would match the characters -, 1, 2, or 3



  

Named Character Classes

• Commonly used character classes can be 
referred to by name (alpha, lower, upper, 
alnum, digit, punct, cntrl)

• Syntax [:name:]
– [a-zA-Z]       [[:alpha:]]
– [a-zA-Z0-9]    [[:alnum:]]
– [45a-z]     [45[:lower:]]

• Important for portability across languages



  

Anchors

• Anchors are used to match at the beginning or end of a line (or both).
• ^ means beginning of the line
• $ means end of the line



  

beat a brat on a boat

match

regular expression ^ b [eor] a t  

regular expression b [eor] a t $ 

beat a brat on a boat

match

^$^word$



  

Repetition

• The * is used to define zero or more 
occurrences of the single regular expression 
preceding it.



  

I got mail, yaaaaaaaaaay!

match

regular expression y a * y  

For me to poop on.

match

regular expression o a * o  

.*



  

Repetition Ranges
• Ranges can also be specified

– {n,m} notation can specify a range of 
repetitions for the immediately preceding regex

– {n} means exactly n occurrences
– {n,} means at least n occurrences
– {n,m} means at least n occurrences but no 

more than m occurrences

• Example:
– .{0,} same as .*
– a{2,} same as aaa* 



  

Subexpressions

• If you want to group part of an expression so that 
* applies to more than just the previous character, 
use ( ) notation

• Subexpresssions are treated like a single character
– a* matches 0 or more occurrences of a
– abc* matches ab, abc, abcc, abccc, …
– (abc)* matches abc, abcabc, abcabcabc, …
– (abc){2,3} matches abcabc or abcabcabc



  

grep

• grep comes from the ed (Unix text editor) search 
command “global regular expression print” or 
g/re/p

• This was such a useful command that it was written 
as a standalone utility

• There are two other variants, egrep and fgrep that 
comprise the grep family

• grep is the answer to the moments where you know 
you want the file that contains a specific phrase but 
you can’t remember its name



  

Family Differences

• grep - uses regular expressions for pattern matching
• fgrep - file grep, does not use regular expressions, 

only matches fixed strings but can get search strings 
from a file

• egrep - extended grep, uses a more powerful set of 
regular expressions but does not support 
backreferencing, generally the fastest member of 
the grep family

• agrep – approximate grep; not standard



  

Syntax

• Regular expression concepts we have seen 
so far are common to grep and egrep.

• grep and egrep have different syntax
– grep: BREs
– egrep: EREs

• Major syntax differences:
– grep: \( and \),  \{ and \}
– egrep: ( and ), { and }



  

 Protecting Regex 
Metacharacters

• Since many of the special characters used in 
regexs also have special meaning to the 
shell, it’s a good idea to get in the habit of 
single quoting your regexs
– This will protect any special characters from 

being operated on by the shell

– If you habitually do it, you won’t have to worry 
about when it is necessary



  

Escaping Special Characters
• Even though we are single quoting our regexs so the 

shell won’t interpret the special characters, sometimes 
we still want to use an operator as itself

• To do this, we “escape” the character with a \ 
(backslash)

• Suppose we want to search for the character sequence 
‘a*b*’
– Unless we do something special, this will match zero or 

more ‘a’s followed by zero or more ‘b’s, not what we want

– ‘a\*b\*’ will fix this - now the asterisks are treated as 
regular characters



  

Egrep: Alternation

• Regex also provides an alternation character | for 
matching one or another subexpression
– (T|Fl)an will match ‘Tan’ or ‘Flan’
– ^(From|Subject): will match the From and Subject lines 

of a typical email message
• It matches a beginning of line followed by either the characters ‘From’ 

or ‘Subject’ followed by a ‘:’

• Subexpressions are used to limit the scope of the 
alternation
– At(ten|nine)tion then matches “Attention” or 

“Atninetion”, not “Atten” or “ninetion” as would happen 
without the parenthesis  - Atten|ninetion



  

Egrep: Repetition Shorthands

• The * (star) has already been seen to specify zero 
or more occurrences of the immediately preceding 
character

• + (plus) means “one or more”
 abc+d will match ‘abcd’, ‘abccd’, or ‘abccccccd’ but 

will not match ‘abd’
 Equivalent to {1,}



  

Egrep: Repetition Shorthands cont

• The ‘?’ (question mark) specifies an optional character, the 
single character that immediately precedes it
 July? will match ‘Jul’ or ‘July’

 Equivalent to {0,1}
 Also equivalent to (Jul|July)

• The *, ?, and + are known as quantifiers because they 
specify the quantity of a match 

• Quantifiers can also be used with subexpressions
– (a*c)+ will match ‘c’, ‘ac’, ‘aac’ or ‘aacaacac’ but will not 

match ‘a’ or a blank line



  

Grep: Backreferences

• Sometimes it is handy to be able to refer to a 
match that was made earlier in a regex

• This is done using backreferences
– \n is the backreference specifier, where n is a number

• For example, to find if the first word of a line is 
the same as the last:
– ^\([[:alpha:]]\{1,\}\).*\1$
– The \([[:alpha:]]\{1,\}\) matches 1 or more 

letters



  

Practical Regex Examples

• Variable names in C
– [a-zA-Z_][a-zA-Z_0-9]*

• Dollar amount with optional cents
– \$[0-9]+(\.[0-9][0-9])?

• Time of day
– (1[012]|[1-9]):[0-5][0-9] (am|pm)

• HTML headers <h1> <H1> <h2> …
– <[hH][1-4]>



  

grep Family
• Syntax

grep [-hilnv] [-e expression] [filename]
egrep [-hilnv] [-e expression] [-f filename] [expression] 

[filename]
fgrep [-hilnxv] [-e string] [-f filename] [string] [filename]
– -h Do not display filenames
– -i  Ignore case
– -l  List only filenames containing matching lines
– -n Precede each matching line with its line number
– -v Negate matches
– -x Match whole line only (fgrep only)
– -e expression Specify expression as option
– -f filename Take the regular expression (egrep) or 

a list of strings (fgrep) from filename



  

grep Examples
• grep 'men' GrepMe
• grep 'fo*' GrepMe
• egrep 'fo+' GrepMe
• egrep -n '[Tt]he' GrepMe
• fgrep 'The' GrepMe
• egrep 'NC+[0-9]*A?' GrepMe
• fgrep -f expfile GrepMe

• Find all lines with signed numbers
 $ egrep ’[-+][0-9]+\.?[0-9]*’ *.c

bsearch. c: return -1;
compile. c: strchr("+1-2*3", t-> op)[1] - ’0’, dst,
convert. c: Print integers in a given base 2-16 (default 10)
convert. c: sscanf( argv[ i+1], "% d", &base);
strcmp. c: return -1;
strcmp. c: return +1;

• egrep has its limits: For example, it cannot match all lines that 
contain a number divisible by 7.



  

Fun with the Dictionary
• /usr/dict/words contains about 25,000 words

– egrep hh /usr/dict/words
• beachhead
• highhanded
• withheld
• withhold

• egrep as a simple spelling checker: Specify plausible 
alternatives you know
egrep "n(ie|ei)ther" /usr/dict/words
neither

• How many words have 3 a’s one letter apart?
– egrep a.a.a /usr/dict/words | wc –l

• 54
– egrep u.u.u /usr/dict/words

• cumulus



  

Other Notes

• Use /dev/null as an extra file name
– Will print the name of the file that matched

• grep test bigfile
– This is a test.

• grep test /dev/null bigfile
– bigfile:This is a test.

• Return code of grep is useful
–  grep fred filename > /dev/null && rm filename



   

 

x 
 

xyz 

Ordinary characters match themselves 
(NEWLINES and metacharacters excluded) 
Ordinary strings match themselves 

\m 
^ 
$ 
. 

[xy^$x] 
[^xy^$z] 

[a-z] 
r* 

r1r2 

Matches literal character m 
Start of line 
End of line 
Any single character 
Any of x, y, ^, $, or z 
Any one character other than x, y, ^, $, or z 
Any single character in given range 
zero or more occurrences of regex r 
Matches r1 followed by r2 

\(r\) 
\n 
 

\{n,m\} 

Tagged regular expression, matches r 
Set to what matched the nth tagged expression 
(n = 1-9) 
Repetition 

r+ 
r? 

r1|r2 
(r1|r2)r3 
(r1|r2)* 

 
{n,m} 

One or more occurrences of r 
Zero or one occurrences of r 
Either r1 or r2 
Either r1r3 or r2r3 
Zero or more occurrences of r1|r2, e.g., r1, r1r1, 
r2r1, r1r1r2r1,…) 
Repetition 

fgrep, grep, egrep

grep, egrep

grep

egrep

This is one line of text

o.*o

input line

regular expression

Quick
Reference



  

Sed: Stream-oriented, Non-
Interactive, Text Editor

• Look for patterns one line at a time, like grep

• Change lines of the file

• Non-interactive text editor
– Editing commands come in as script

– There is an interactive editor ed which accepts the same 
commands

• A Unix filter
– Superset of previously mentioned tools



  

Conceptual overview

 All editing commands in a sed script are applied in 
order to each input line.

• If a command changes the input, subsequent 
command address will be applied to the current 
(modified) line in the pattern space, not the original 
input line.

• The original input file is unchanged (sed is a filter), 
and the results are sent to standard output (but can 
be redirected to a file).



  

Sed Architecture

scriptfile

Input

Output

Input line
(Pattern Space)

Hold Space



  

Scripts
• A script is nothing more than a file of commands
• Each command consists of up to two  addresses 

and an action, where the address can be a regular 
expression or line number.

address action command

address action

address action

address action

address action

script



  

Scripts (continued)

• As each line of the input file is read, sed reads the 
first command of the script and checks the address 
against the current input line:
– If there is a match, the command is executed 
– If there is no match, the command is ignored
– sed then repeats this action for every command in the 

script file

• When it has reached the end of the script, sed 
outputs the current line (pattern space) unless
the -n option has been set



  

Sed Flow of Control
• sed then reads the next line in the input file and restarts 

from the beginning of the script file
• All commands in the script file are compared to, and 

potentially act on, all lines in the input file

. . .cmd 1 cmd ncmd 2

script

input

output
output

only without -n

print cmd



  

sed Commands
• sed commands have the general form

– [address[, address]][!]command [arguments]

• sed copies each input line into a pattern space
– If the address of the command matches the line in the 

pattern space, the command is applied to that line
– If the command has no address, it is applied to each line 

as it enters pattern space
– If a command changes the line in pattern space, 

subsequent commands operate on the modified line

• When all commands have been read, the line in 
pattern space is written to standard output and a 
new line is read into pattern space



  

Addressing

• An address can be either a line number or a 
pattern, enclosed in slashes ( /pattern/ )

• A pattern is described using regular 
expressions (BREs, as in grep)

• If no pattern is specified, the command will 
be applied to all lines of the input file

• To refer to the last line: $



  

Addressing (continued)

• Most commands will accept two addresses
– If only one address is given, the command operates 

only on that line
– If two comma separated addresses are given, then the 

command operates on a range of lines between the first 
and second address, inclusively

• The ! operator can be used to negate an address, 
ie; address!command causes command to be 
applied to all lines that do not match address



  

Commands

• command is a single letter

• Example: Deletion: d
•[address1][,address2]d

– Delete the addressed line(s) from the pattern 
space; line(s) not passed to standard output. 

– A new line of input is read and editing resumes 
with the first command of the script.



  

Address and Command Examples

• d deletes the all lines
• 6d deletes line 6
• /^$/d deletes all blank lines
• 1,10d deletes lines 1 through 10
• 1,/^$/d deletes from line 1 through the first blank line
• /^$/,$d deletes from the first blank line through 

the last line of the file
• /^$/,10d deletes from the first blank line through line 10
• /^ya*y/,/[0-9]$/d deletes from the first line that begins

with yay, yaay, yaaay, etc. through
the first line that ends with a digit



  

Multiple Commands

• Braces {} can be used to apply multiple commands to an 
address

[/pattern/[,/pattern/]]{
command1
command2
command3
}

• Strange syntax:
– The opening brace must be the last character on a line 
– The closing brace must be on a line by itself
– Make sure there are no spaces following the braces



  

Sed Commands

• Although sed contains many editing commands, 
we are only going to cover the following subset:

• p - print
• r  - read
• w - write
• y  - transform
• q - quit

• s - substitute
• a - append
• i  - insert
• c - change
• d - delete



  

sed Syntax
• Syntax: sed [-n] [-e] [‘command’] [file…] 

       sed [-n] [-f scriptfile] [file…]
– -n - only print lines specified with the print command 

(or the ‘p’ flag of the substitute (‘s’) command)

– -f scriptfile - next argument is a filename containing 
editing commands

– -e command - the next argument is an editing command 
rather than a filename, useful if multiple commands are 
specified

– If the first line of a scriptfile is “#n”, sed acts as though 
 -n had been specified



  

Print

• The Print command (p) can be used to force the 
pattern space to be output, useful if the -n option 
has been specified

• Syntax: [address1[,address2]]p
• Note: if the -n or #n option has not been specified, 
p will cause the line to be output twice!

• Examples:
1,5p will display lines 1 through 5
/^$/,$p will display the lines from the first 
blank line through the last line of the file



  

Substitute

• Syntax: [address(es)]s/pattern/replacement/
[flags]
– pattern - search pattern

– replacement - replacement string for pattern

– flags - optionally any of the following
• n a number from 1 to 512 indicating which 

occurrence of pattern should be 
replaced

• g global, replace all occurrences of pattern 
in pattern space

• p print contents of pattern space



  

Substitute Examples

• s/Puff Daddy/P. Diddy/
– Substitute P. Diddy for the first occurrence of Puff Daddy in 

pattern space

• s/Tom/Dick/2
– Substitutes Dick for the second occurrence of Tom in the 

pattern space

• s/wood/plastic/p
– Substitutes plastic for the first occurrence of wood and 

outputs (prints) pattern space



  

Replacement Patterns

• Substitute can use several special characters 
in the replacement string
– & - replaced by the entire string matched in the 

regular expression for pattern
– \n - replaced by the nth substring (or 

subexpression) previously specified using “\(“ 
and “\)”

– \  -  used to escape the ampersand (&) and the 
backslash (\) 



  

Replacement Pattern Examples

"the UNIX operating system …"
s/.NI./wonderful &/
"the wonderful UNIX operating system …"

cat test1
first:second
one:two
sed 's/\(.*\):\(.*\)/\2:\1/' test1
second:first
two:one

sed 's/\([[:alpha:]]\)\([^ \n]*\)/\2\1ay/g'
– Pig Latin ("unix is fun" -> "nixuay siay unfay")



  

Append, Insert, and Change

• Syntax for these commands is a little strange 
because they must be specified on multiple lines

• append [address]a\
 text
• insert [address]i\
 text
• change [address(es)]c\
 text
• append/insert for single lines only, not range



  

Append and Insert
• Append places text after the current line in pattern space
• Insert places text before the current line in pattern space

– Each of these commands requires a \ following it.
text must begin on the next line.

– If text begins with whitespace, sed will discard it
unless you start the line with a \

• Example:
/<Insert Text Here>/i\

 Line 1 of inserted text\
 \        Line 2 of inserted text 

         would leave the following in the pattern space
Line 1 of inserted text

      Line 2 of inserted text
<Insert Text Here>



  

Change

• Unlike Insert and Append, Change can be applied 
to either a single line address or a range of 
addresses

• When applied to a range, the entire range is 
replaced by text specified with change, not each 
line
– Exception: If the Change command is executed with 

other commands enclosed in { } that act on a range of 
lines, each line will be replaced with text

• No subsequent editing allowed



  

Change Examples

• Remove mail headers, ie; 
the address specifies a range 
of lines beginning with a 
line that begins with From 
until the first blank line.
– The first example replaces all 

lines with a single occurrence 
of <Mail Header Removed>. 

– The second example replaces 
each line with <Mail Header 
Removed>

/^From /,/^$/c\
  <Mail Headers Removed>

/^From /,/^$/{
s/^From //p
c\
<Mail Header Removed>
}



  

Using !

• If an address is followed by an exclamation point (!), 
the associated command is applied to all lines that 
don’t match the address or address range

• Examples:
 1,5!d would delete all lines except 1 through 5
 /black/!s/cow/horse/ would substitute “horse” 

for “cow” on all lines except those that contained 
“black”

“The brown cow” -> “The brown horse”
“The black cow” -> “The black cow”



  

Transform
• The Transform command (y) operates like tr, it 

does a one-to-one or character-to-character 
replacement

• Transform accepts zero, one or two addresses
• [address[,address]]y/abc/xyz/

– every a within the specified address(es) is transformed 
to an x.  The same is true for b to y and c to z

– y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNO
PQRSTUVWXYZ/ changes all lower case characters on the 
addressed line to upper case

– If you only want to transform specific characters (or a 
word) in the line, it is much more difficult and requires 
use of the hold space



  

Pattern and Hold spaces

• Pattern space: Workspace or temporary 
buffer where a single line of input is held 
while the editing commands are applied

• Hold space: Secondary temporary buffer 
for temporary storage only

Pattern

Hold

in

out

h, H, g, G



  

Quit
• Quit causes sed to stop reading new input lines 

and stop sending them to standard output
• It takes at most a single line address

– Once a line matching the address is reached, the script 
will be terminated

– This can be used to save time when you only want to 
process some portion of the beginning of a file

• Example: to print the first 100 lines of a file (like 
head) use:
– sed '100q' filename
– sed will, by default, send the first 100 lines of filename 

to standard output and then quit processing



  

Sed Advantages

• Regular expressions

• Fast

• Concise



  

Sed  Drawbacks 

• Hard to remember text from one line to 
another

• Not possible to go backward in the file
• No way to do forward references 

like    /..../+1

• No facilities to manipulate numbers

• Cumbersome syntax



  

Awk

Programmable Filters



  

Aho Weinberger Kernighan

Why is it called AWK?

http://www.scholarsfirst.com/dept_compsci/_shared/kernighan.jpg


  

Awk Introduction
• awk's purpose: A general purpose programmable filter 

that handles text (strings) as easily as numbers
– This makes awk one of the most powerful of the Unix 

utilities

• awk processes fields while sed only processes lines
• nawk (new awk) is the new standard for awk

– Designed to facilitate large awk programs
– gawk is a free nawk clone from GNU

• awk gets it’s input from
– files
– redirection and pipes 
– directly from standard input



  

AWK Highlights
• A programming language for handling common 

data manipulation tasks with only a few lines of 
code

• awk is a pattern-action language, like sed
• The language looks a little like C but automatically 

handles input, field splitting, initialization, and 
memory management
– Built-in string and number data types
– No variable type declarations

• awk is a great prototyping language
– Start with a few lines and keep adding until it does what 

you want



  

Awk Features over Sed

• Convenient numeric processing

• Variables and control flow in the actions

• Convenient way of accessing fields within 
lines

• Flexible printing

• Built-in arithmetic and string functions

• C-like syntax



  

BEGIN {action}

pattern {action}

pattern {action}

  .

  .

  .

pattern { action}

END {action}

Structure of an AWK Program

• An awk program consists of:
– An optional BEGIN segment

• For processing to execute prior to 
reading input

– pattern - action pairs
• Processing for input data

• For each pattern matched, the 
corresponding action is taken

– An optional END segment
• Processing after end of input data



  

Running an AWK Program

• There are several ways to run an Awk program
– awk 'program' input_file(s)

• program and input files are provided as command-line 
arguments

– awk 'program'
• program is a command-line argument; input is taken from 

standard input (yes, awk is a filter!)

– awk -f program_file input_files
• program is read from a file



  

Patterns and Actions

• Search a set of files for patterns.

• Perform specified actions upon lines or 
fields that contain instances of patterns.

• Does not alter input files.

• Process one input line at a time

• This is similar to sed



  

Pattern-Action Structure
• Every program statement has to have a pattern or an 

action or both

• Default pattern is to match all lines

• Default action is to print current record
• Patterns are simply listed; actions are enclosed in { }

• awk scans a sequence of input lines, or records, one 
by one, searching for lines that match the pattern
– Meaning of match depends on the pattern



  

Patterns

• Selector that determines whether action is to be 
executed

• pattern can be:
– the special token BEGIN or END
– regular expressions (enclosed with //)
– arithmetic relation operators
– string-valued expressions
– arbitrary combination of the above

• /NYU/ matches if the string “NYU” is in the record
• x > 0 matches if the condition is true
• /NYU/ && (name == "UNIX Tools")



  

BEGIN and END patterns

• BEGIN and END provide a way to gain 
control before and after processing, for 
initialization and wrap-up.
– BEGIN: actions are performed before the first 

input line is read.

– END: actions are done after the last input line 
has been processed.



  

Actions

• action may include a list of one or more C like 
statements, as well as arithmetic and string expressions 
and assignments and multiple output streams.

• action is performed on every line that matches pattern.
– If pattern is not provided, action is performed on every input line

– If action is not provided, all matching lines are sent to standard output.

• Since patterns and actions are optional, actions must 
be enclosed in braces to distinguish them from pattern.



  

An Example

ls | awk '
BEGIN { print "List of html files:" }
/\.html$/ { print }
END { print "There you go!" }
'

List of html files:
index.html
as1.html
as2.html
There you go!



  

Variables

• awk scripts can define and use variables
BEGIN { sum = 0 }

{ sum ++ }

END { print sum }

• Some variables are predefined



  

Records

• Default record separator is newline
– By default, awk processes its input a line at a 

time.

• Could be any other regular expression.
• RS: record separator

– Can be changed in BEGIN action

• NR is the variable whose value is the 
number of the current record.



  

Fields

• Each input line is split into fields.
– FS: field separator: default is whitespace (1 or more 

spaces or tabs)
– awk -Fc option sets FS to the character c

• Can also be changed in BEGIN

– $0 is the entire line

– $1 is the first field, $2 is the second field, …. 

• Only fields begin with $, variables are unadorned



  

Simple Output From AWK

• Printing Every Line
– If an action has no pattern, the action is performed to all 

input lines
• { print } will print all input lines to standard out
• { print $0 } will do the same thing

• Printing Certain Fields
– Multiple items can be printed on the same output line with 

a single print statement
– { print $1, $3 }
– Expressions separated by a comma are, by default, 

separated by a single space when output



  

Output (continued)

• NF, the Number of Fields
– Any valid expression can be used after a $ to indicate the 

contents of a particular field
– One built-in expression is NF, or Number of Fields
– { print NF, $1, $NF } will print the number of fields, 

the first field, and the last field in the current record
– { print $(NF-2) } prints the third to last field

• Computing and Printing
– You can also do computations on the field values and 

include the results in your output
– { print $1, $2 * $3 }



  

Output (continued)

• Printing Line Numbers
– The built-in variable NR can be used to print line 

numbers
– { print NR, $0 } will print each line prefixed with its 

line number

• Putting Text in the Output
– You can also add other text to the output besides what is 

in the current record
– { print "total pay for", $1, "is", $2 * $3 }

– Note that the inserted text needs to be surrounded by 
double quotes



  

Fancier Output

• Lining Up Fields
– Like C, Awk has a printf function for producing 

formatted output
– printf has the form

• printf( format, val1, val2, val3, … )

{ printf(“total pay for %s is $%.2f\n”,
         $1, $2 * $3) }

– When using printf, formatting is under your control so 
no automatic spaces or newlines are provided by awk.  
You have to insert them yourself.
{ printf(“%-8s %6.2f\n”, $1, $2 * $3 ) }



  

Selection
• Awk patterns are good for selecting specific lines 

from the input for further processing
– Selection by Comparison

• $2 >= 5 { print }

– Selection by Computation
• $2 * $3 > 50 { printf(“%6.2f for %s\n”,
                      $2 * $3, $1) }

– Selection by Text Content
• $1 == "NYU"
• /NYU/

– Combinations of Patterns
• $2 >= 4 || $3 >= 20

– Selection by Line Number
• NR >= 10 && NR <= 20



  

Arithmetic and variables

• awk variables take on numeric (floating 
point) or string values according to context.

• User-defined variables are unadorned (they 
need not be declared).

• By default, user-defined variables are 
initialized to the null string which has 
numerical value 0.



  

Computing with AWK

• Counting is easy to do with Awk
$3 > 15 { emp = emp + 1}
END { print emp, “employees worked

          more than 15 hrs”}

• Computing Sums and Averages is also simple
{ pay = pay + $2 * $3 }
END { print NR, “employees”
      print “total pay is”, pay
      print “average pay is”, pay/NR
    }



  

Handling Text

• One major advantage of Awk is its ability to 
handle strings as easily as many languages handle 
numbers

• Awk variables can hold strings of characters as 
well as numbers, and Awk conveniently translates 
back and forth as needed

• This program finds the employee who is paid the 
most per hour:

      # Fields: employee, payrate
    $2 > maxrate { maxrate = $2; maxemp = $1 }

      END { print “highest hourly rate:”,
             maxrate, “for”, maxemp }



  

String Manipulation

• String Concatenation
– New strings can be created by combining old ones

         { names = names $1 " " }

END { print names }

• Printing the Last Input Line
– Although NR retains its value after the last input line 

has been read, $0 does not

         { last = $0 }

END { print last }



  

Built-in Functions

• awk contains a number of built-in functions.  
length is one of them.

• Counting Lines, Words, and Characters using 
length (a poor man’s wc)
         { nc = nc + length($0) + 1
       nw = nw + NF
     }
END { print NR, "lines,", nw, "words,", nc, 
      "characters" }

• substr(s, m, n) produces the substring of s that 
begins at position m and is at most n characters 
long.



  

Control Flow Statements

• awk provides several control flow statements for 
making decisions and writing loops

• If-Then-Else
        $2 > 6 { n = n + 1; pay = pay + $2 * $3 }

END { if (n > 0)
          print n, "employees, total pay is",
pay, "average pay is", pay/n

      else
          print "no employees are paid more
than $6/hour"

    }



  

Loop Control

• While
# interest1 - compute compound interest

#   input: amount, rate, years

#   output: compound value at end of each year

{  i = 1

while (i <= $3) {

printf(“\t%.2f\n”, $1 * (1 + $2) ^ i)

i = i + 1

}

}



  

Do-While Loops

• Do While
do {

statement1

}

while (expression)



  

For statements

• For
# interest2 - compute compound interest
#   input: amount, rate, years

#   output: compound value at end of each year

{ for (i = 1; i <= $3; i = i + 1)

printf("\t%.2f\n", $1 * (1 + $2) ^ i)

}

 



  

Arrays

• Array elements are not declared

• Array subscripts can have any value:
– Numbers

– Strings!  (associative arrays)

• Examples
– arr[3]="value"
– grade["Korn"]=40.3



  

Array Example

# reverse - print input in reverse order by line

{ line[NR] = $0 }   # remember each line

 

END {    
for (i=NR; (i > 0); i=i-1) {
    print line[i]
}

  }



  

Useful One (or so)-liners

• END { print NR }
• NR == 10
• { print $NF }
•   { field = $NF }

  END { print field }
• NF > 4
• $NF > 4
•   { nf = nf + NF }

    END { print nf }   



  

More One-liners

• /Jeff/ { nlines = nlines + 1 }

   END   { print nlines }
• $1 > max { max = $1; maxline = $0 }

   END     { print max, maxline }
• NF > 0
• length($0) > 80
• { print NF, $0}
• { print $2, $1 }
• { temp = $1; $1 = $2; $2 = temp; print }
• { $2 = ""; print }



  

Even More One-liners
• { for (i = NF; i > 0; i = i - 1) 
printf(“%s “, $i)

    printf(“\n”)
  }
• { sum = 0
    for (i = 1; i <= NF; i = i + 1)
sum = sum + $i 

    print sum
   }
• { for (i = 1; i <= NF; i = i + 1)

sum = sum $i }
    END { print sum }
}



  

Awk Variables

• $0, $1, $2, $NF

• NR - Number of records processed

• NF - Number of fields in current record

• FILENAME - name of current input file

• FS - Field separator, space or TAB by default

• OFS - Output field separator, space by default

• ARGC/ARGV - Argument Count, Argument Value 
array
– Used to get arguments from the command line



  

Operators
• = assignment operator; sets a variable equal to a 

value or string
• == equality operator; returns TRUE is both sides 

are equal
• != inverse equality operator
• && logical AND
• || logical OR
• ! logical NOT
• <, >, <=, >= relational operators
• +, -, /, *, %, ^
• String concatenation



  

Built-In Functions
• Arithmetic

– sin, cos, atan, exp, int, log, rand, sqrt

• String
– length, substitution, find substrings, split strings

• Output
– print, printf, print and printf to file

• Special
– system - executes a Unix command

• system(“clear”) to clear the screen
• Note double quotes around the Unix command

– exit - stop reading input and go immediately to the END 
pattern-action pair if it exists, otherwise exit the script 



  

More Information

on the website
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