

Lecture 4

Regular Expressions:

grep, sed and awk

Previously

• Basic UNIX Commands
– Files: rm, cp, mv, ls
– Processes: ps, kill

• Unix Filters
– cat, head, tail, tee, wc
– cut, paste
– find
– sort, uniq

Today

• Regular Expressions
– Allow you to search for text in files
– grep command

• Stream manipulation:
– sed
– awk?

• But first, one command we didn’t cover last time…

tr: TRanslate Characters
• Copies standard input to standard output with

substitution or deletion of selected characters

• Syntax: tr [-cds] [string1] [string2]
• -d delete all input characters contained in string1
• -c complements the characters in string1 with respect

 to the entire ASCII character set
• -s squeeze all strings of repeated output characters

that are in string2 to single characters

tr (continued)
• tr reads from standard input.

– Any character that does not match a character in string1
is passed to standard output unchanged

– Any character that does match a character in string1 is
translated into the corresponding character in string2
and then passed to standard output

• Examples
– tr s z replaces all instances of s with z
– tr so zx replaces all instances of s with z and o

with x
– tr a-z A-Z replaces all lower case characters with

upper case characters
– tr –d a-c deletes all a-c characters

tr uses

• Change delimiter
tr ‘|’ ‘:’

• Rewrite numbers
tr ,. .,

• Import DOS files
tr –d ’\r’ < dos_file

• Find ASCII in a binary file
tr –cd ’\n[a-zA-Z0-9]’ < binary_file

Regular Expressions

What Is a Regular Expression?

• A regular expression (regex) describes a set of
possible input strings.

• Regular expressions descend from a fundamental
concept in Computer Science called finite
automata theory

• Regular expressions are endemic to Unix
– vi, ed, sed, and emacs
– awk, tcl, perl and Python
– grep, egrep, fgrep
– compilers

Regular Expressions

• The simplest regular expressions are a
string of literal characters to match.

• The string matches the regular expression if
it contains the substring.

UNIX Tools rocks.

match

UNIX Tools sucks.

match

UNIX Tools is okay.
no match

regular expression c k s

Regular Expressions

• A regular expression can match a string in
more than one place.

Scrapple from the apple.

match 1 match 2

regular expression a p p l e

Regular Expressions

• The . regular expression can be used to
match any character.

For me to poop on.

match 1 match 2

regular expression o .

Character Classes

• Character classes [] can be used to match
any specific set of characters.

beat a brat on a boat

match 1 match 2

regular expression b [eor] a t

match 3

Negated Character Classes

• Character classes can be negated with the
[^] syntax.

beat a brat on a boat

match

regular expression b [^eo] a t

More About Character Classes
– [aeiou] will match any of the characters a, e, i, o,

or u
– [kK]orn will match korn or Korn

• Ranges can also be specified in character classes
– [1-9] is the same as [123456789]
– [abcde] is equivalent to [a-e]
– You can also combine multiple ranges

•[abcde123456789] is equivalent to [a-e1-9]
– Note that the - character has a special meaning in a

character class but only if it is used within a range,
[-123] would match the characters -, 1, 2, or 3

Named Character Classes

• Commonly used character classes can be
referred to by name (alpha, lower, upper,
alnum, digit, punct, cntrl)

• Syntax [:name:]
– [a-zA-Z] [[:alpha:]]
– [a-zA-Z0-9] [[:alnum:]]
– [45a-z] [45[:lower:]]

• Important for portability across languages

Anchors

• Anchors are used to match at the beginning or end of a line (or both).
• ^ means beginning of the line
• $ means end of the line

beat a brat on a boat

match

regular expression ^ b [eor] a t

regular expression b [eor] a t $

beat a brat on a boat

match

^word

Repetition

• The * is used to define zero or more
occurrences of the single regular expression
preceding it.

I got mail, yaaaaaaaaaay!

match

regular expression y a * y

For me to poop on.

match

regular expression o a * o

.*

Repetition Ranges
• Ranges can also be specified

– {n,m} notation can specify a range of
repetitions for the immediately preceding regex

– {n} means exactly n occurrences
– {n,} means at least n occurrences
– {n,m} means at least n occurrences but no

more than m occurrences

• Example:
– .{0,} same as .*
– a{2,} same as aaa*

Subexpressions

• If you want to group part of an expression so that
* applies to more than just the previous character,
use () notation

• Subexpresssions are treated like a single character
– a* matches 0 or more occurrences of a
– abc* matches ab, abc, abcc, abccc, …
– (abc)* matches abc, abcabc, abcabcabc, …
– (abc){2,3} matches abcabc or abcabcabc

grep

• grep comes from the ed (Unix text editor) search
command “global regular expression print” or
g/re/p

• This was such a useful command that it was written
as a standalone utility

• There are two other variants, egrep and fgrep that
comprise the grep family

• grep is the answer to the moments where you know
you want the file that contains a specific phrase but
you can’t remember its name

Family Differences

• grep - uses regular expressions for pattern matching
• fgrep - file grep, does not use regular expressions,

only matches fixed strings but can get search strings
from a file

• egrep - extended grep, uses a more powerful set of
regular expressions but does not support
backreferencing, generally the fastest member of
the grep family

• agrep – approximate grep; not standard

Syntax

• Regular expression concepts we have seen
so far are common to grep and egrep.

• grep and egrep have different syntax
– grep: BREs
– egrep: EREs

• Major syntax differences:
– grep: \(and \), \{ and \}
– egrep: (and), { and }

 Protecting Regex
Metacharacters

• Since many of the special characters used in
regexs also have special meaning to the
shell, it’s a good idea to get in the habit of
single quoting your regexs
– This will protect any special characters from

being operated on by the shell

– If you habitually do it, you won’t have to worry
about when it is necessary

Escaping Special Characters
• Even though we are single quoting our regexs so the

shell won’t interpret the special characters, sometimes
we still want to use an operator as itself

• To do this, we “escape” the character with a \
(backslash)

• Suppose we want to search for the character sequence
‘a*b*’
– Unless we do something special, this will match zero or

more ‘a’s followed by zero or more ‘b’s, not what we want

– ‘a*b*’ will fix this - now the asterisks are treated as
regular characters

Egrep: Alternation

• Regex also provides an alternation character | for
matching one or another subexpression
– (T|Fl)an will match ‘Tan’ or ‘Flan’
– ^(From|Subject): will match the From and Subject lines

of a typical email message
• It matches a beginning of line followed by either the characters ‘From’

or ‘Subject’ followed by a ‘:’

• Subexpressions are used to limit the scope of the
alternation
– At(ten|nine)tion then matches “Attention” or

“Atninetion”, not “Atten” or “ninetion” as would happen
without the parenthesis - Atten|ninetion

Egrep: Repetition Shorthands

• The * (star) has already been seen to specify zero
or more occurrences of the immediately preceding
character

• + (plus) means “one or more”
 abc+d will match ‘abcd’, ‘abccd’, or ‘abccccccd’ but

will not match ‘abd’
 Equivalent to {1,}

Egrep: Repetition Shorthands cont

• The ‘?’ (question mark) specifies an optional character, the
single character that immediately precedes it
 July? will match ‘Jul’ or ‘July’

 Equivalent to {0,1}
 Also equivalent to (Jul|July)

• The *, ?, and + are known as quantifiers because they
specify the quantity of a match

• Quantifiers can also be used with subexpressions
– (a*c)+ will match ‘c’, ‘ac’, ‘aac’ or ‘aacaacac’ but will not

match ‘a’ or a blank line

Grep: Backreferences

• Sometimes it is handy to be able to refer to a
match that was made earlier in a regex

• This is done using backreferences
– \n is the backreference specifier, where n is a number

• For example, to find if the first word of a line is
the same as the last:
– ^\([[:alpha:]]\{1,\}\).*\1$
– The \([[:alpha:]]\{1,\}\) matches 1 or more

letters

Practical Regex Examples

• Variable names in C
– [a-zA-Z_][a-zA-Z_0-9]*

• Dollar amount with optional cents
– \$[0-9]+(\.[0-9][0-9])?

• Time of day
– (1[012]|[1-9]):[0-5][0-9] (am|pm)

• HTML headers <h1> <H1> <h2> …
– <[hH][1-4]>

grep Family
• Syntax

grep [-hilnv] [-e expression] [filename]
egrep [-hilnv] [-e expression] [-f filename] [expression]

[filename]
fgrep [-hilnxv] [-e string] [-f filename] [string] [filename]
– -h Do not display filenames
– -i Ignore case
– -l List only filenames containing matching lines
– -n Precede each matching line with its line number
– -v Negate matches
– -x Match whole line only (fgrep only)
– -e expression Specify expression as option
– -f filename Take the regular expression (egrep) or

a list of strings (fgrep) from filename

grep Examples
• grep 'men' GrepMe
• grep 'fo*' GrepMe
• egrep 'fo+' GrepMe
• egrep -n '[Tt]he' GrepMe
• fgrep 'The' GrepMe
• egrep 'NC+[0-9]*A?' GrepMe
• fgrep -f expfile GrepMe

• Find all lines with signed numbers
 $ egrep ’[-+][0-9]+\.?[0-9]*’ *.c

bsearch. c: return -1;
compile. c: strchr("+1-2*3", t-> op)[1] - ’0’, dst,
convert. c: Print integers in a given base 2-16 (default 10)
convert. c: sscanf(argv[i+1], "% d", &base);
strcmp. c: return -1;
strcmp. c: return +1;

• egrep has its limits: For example, it cannot match all lines that
contain a number divisible by 7.

Fun with the Dictionary
• /usr/dict/words contains about 25,000 words

– egrep hh /usr/dict/words
• beachhead
• highhanded
• withheld
• withhold

• egrep as a simple spelling checker: Specify plausible
alternatives you know
egrep "n(ie|ei)ther" /usr/dict/words
neither

• How many words have 3 a’s one letter apart?
– egrep a.a.a /usr/dict/words | wc –l

• 54
– egrep u.u.u /usr/dict/words

• cumulus

Other Notes

• Use /dev/null as an extra file name
– Will print the name of the file that matched

• grep test bigfile
– This is a test.

• grep test /dev/null bigfile
– bigfile:This is a test.

• Return code of grep is useful
– grep fred filename > /dev/null && rm filename

x

xyz

Ordinary characters match themselves
(NEWLINES and metacharacters excluded)
Ordinary strings match themselves

\m
^
$
.

[xy^$x]
[^xy^$z]

[a-z]
r*

r1r2

Matches literal character m
Start of line
End of line
Any single character
Any of x, y, ^, $, or z
Any one character other than x, y, ^, $, or z
Any single character in given range
zero or more occurrences of regex r
Matches r1 followed by r2

\(r\)
\n

\{n,m\}

Tagged regular expression, matches r
Set to what matched the nth tagged expression
(n = 1-9)
Repetition

r+
r?

r1|r2
(r1|r2)r3
(r1|r2)*

{n,m}

One or more occurrences of r
Zero or one occurrences of r
Either r1 or r2
Either r1r3 or r2r3
Zero or more occurrences of r1|r2, e.g., r1, r1r1,
r2r1, r1r1r2r1,…)
Repetition

fgrep, grep, egrep

grep, egrep

grep

egrep

This is one line of text

o.*o

input line

regular expression

Quick
Reference

Sed: Stream-oriented, Non-
Interactive, Text Editor

• Look for patterns one line at a time, like grep

• Change lines of the file

• Non-interactive text editor
– Editing commands come in as script

– There is an interactive editor ed which accepts the same
commands

• A Unix filter
– Superset of previously mentioned tools

Conceptual overview

 All editing commands in a sed script are applied in
order to each input line.

• If a command changes the input, subsequent
command address will be applied to the current
(modified) line in the pattern space, not the original
input line.

• The original input file is unchanged (sed is a filter),
and the results are sent to standard output (but can
be redirected to a file).

Sed Architecture

scriptfile

Input

Output

Input line
(Pattern Space)

Hold Space

Scripts
• A script is nothing more than a file of commands
• Each command consists of up to two addresses

and an action, where the address can be a regular
expression or line number.

address action command

address action

address action

address action

address action

script

Scripts (continued)

• As each line of the input file is read, sed reads the
first command of the script and checks the address
against the current input line:
– If there is a match, the command is executed
– If there is no match, the command is ignored
– sed then repeats this action for every command in the

script file

• When it has reached the end of the script, sed
outputs the current line (pattern space) unless
the -n option has been set

Sed Flow of Control
• sed then reads the next line in the input file and restarts

from the beginning of the script file
• All commands in the script file are compared to, and

potentially act on, all lines in the input file

. . .cmd 1 cmd ncmd 2

script

input

output
output

only without -n

print cmd

sed Commands
• sed commands have the general form

– [address[, address]][!]command [arguments]

• sed copies each input line into a pattern space
– If the address of the command matches the line in the

pattern space, the command is applied to that line
– If the command has no address, it is applied to each line

as it enters pattern space
– If a command changes the line in pattern space,

subsequent commands operate on the modified line

• When all commands have been read, the line in
pattern space is written to standard output and a
new line is read into pattern space

Addressing

• An address can be either a line number or a
pattern, enclosed in slashes (/pattern/)

• A pattern is described using regular
expressions (BREs, as in grep)

• If no pattern is specified, the command will
be applied to all lines of the input file

• To refer to the last line: $

Addressing (continued)

• Most commands will accept two addresses
– If only one address is given, the command operates

only on that line
– If two comma separated addresses are given, then the

command operates on a range of lines between the first
and second address, inclusively

• The ! operator can be used to negate an address,
ie; address!command causes command to be
applied to all lines that do not match address

Commands

• command is a single letter

• Example: Deletion: d
•[address1][,address2]d

– Delete the addressed line(s) from the pattern
space; line(s) not passed to standard output.

– A new line of input is read and editing resumes
with the first command of the script.

Address and Command Examples

• d deletes the all lines
• 6d deletes line 6
• /^$/d deletes all blank lines
• 1,10d deletes lines 1 through 10
• 1,/^$/d deletes from line 1 through the first blank line
• /^$/,$d deletes from the first blank line through

the last line of the file
• /^$/,10d deletes from the first blank line through line 10
• /^ya*y/,/[0-9]$/d deletes from the first line that begins

with yay, yaay, yaaay, etc. through
the first line that ends with a digit

Multiple Commands

• Braces {} can be used to apply multiple commands to an
address

[/pattern/[,/pattern/]]{
command1
command2
command3
}

• Strange syntax:
– The opening brace must be the last character on a line
– The closing brace must be on a line by itself
– Make sure there are no spaces following the braces

Sed Commands

• Although sed contains many editing commands,
we are only going to cover the following subset:

• p - print
• r - read
• w - write
• y - transform
• q - quit

• s - substitute
• a - append
• i - insert
• c - change
• d - delete

sed Syntax
• Syntax: sed [-n] [-e] [‘command’] [file…]

 sed [-n] [-f scriptfile] [file…]
– -n - only print lines specified with the print command

(or the ‘p’ flag of the substitute (‘s’) command)

– -f scriptfile - next argument is a filename containing
editing commands

– -e command - the next argument is an editing command
rather than a filename, useful if multiple commands are
specified

– If the first line of a scriptfile is “#n”, sed acts as though
 -n had been specified

Print

• The Print command (p) can be used to force the
pattern space to be output, useful if the -n option
has been specified

• Syntax: [address1[,address2]]p
• Note: if the -n or #n option has not been specified,
p will cause the line to be output twice!

• Examples:
1,5p will display lines 1 through 5
/^$/,$p will display the lines from the first
blank line through the last line of the file

Substitute

• Syntax: [address(es)]s/pattern/replacement/
[flags]
– pattern - search pattern

– replacement - replacement string for pattern

– flags - optionally any of the following
• n a number from 1 to 512 indicating which

occurrence of pattern should be
replaced

• g global, replace all occurrences of pattern
in pattern space

• p print contents of pattern space

Substitute Examples

• s/Puff Daddy/P. Diddy/
– Substitute P. Diddy for the first occurrence of Puff Daddy in

pattern space

• s/Tom/Dick/2
– Substitutes Dick for the second occurrence of Tom in the

pattern space

• s/wood/plastic/p
– Substitutes plastic for the first occurrence of wood and

outputs (prints) pattern space

Replacement Patterns

• Substitute can use several special characters
in the replacement string
– & - replaced by the entire string matched in the

regular expression for pattern
– \n - replaced by the nth substring (or

subexpression) previously specified using “\(“
and “\)”

– \ - used to escape the ampersand (&) and the
backslash (\)

Replacement Pattern Examples

"the UNIX operating system …"
s/.NI./wonderful &/
"the wonderful UNIX operating system …"

cat test1
first:second
one:two
sed 's/\(.*\):\(.*\)/\2:\1/' test1
second:first
two:one

sed 's/\([[:alpha:]]\)\([^ \n]*\)/\2\1ay/g'
– Pig Latin ("unix is fun" -> "nixuay siay unfay")

Append, Insert, and Change

• Syntax for these commands is a little strange
because they must be specified on multiple lines

• append [address]a\
 text
• insert [address]i\
 text
• change [address(es)]c\
 text
• append/insert for single lines only, not range

Append and Insert
• Append places text after the current line in pattern space
• Insert places text before the current line in pattern space

– Each of these commands requires a \ following it.
text must begin on the next line.

– If text begins with whitespace, sed will discard it
unless you start the line with a \

• Example:
/<Insert Text Here>/i\

 Line 1 of inserted text\
 \ Line 2 of inserted text

 would leave the following in the pattern space
Line 1 of inserted text

 Line 2 of inserted text
<Insert Text Here>

Change

• Unlike Insert and Append, Change can be applied
to either a single line address or a range of
addresses

• When applied to a range, the entire range is
replaced by text specified with change, not each
line
– Exception: If the Change command is executed with

other commands enclosed in { } that act on a range of
lines, each line will be replaced with text

• No subsequent editing allowed

Change Examples

• Remove mail headers, ie;
the address specifies a range
of lines beginning with a
line that begins with From
until the first blank line.
– The first example replaces all

lines with a single occurrence
of <Mail Header Removed>.

– The second example replaces
each line with <Mail Header
Removed>

/^From /,/^$/c\
 <Mail Headers Removed>

/^From /,/^$/{
s/^From //p
c\
<Mail Header Removed>
}

Using !

• If an address is followed by an exclamation point (!),
the associated command is applied to all lines that
don’t match the address or address range

• Examples:
 1,5!d would delete all lines except 1 through 5
 /black/!s/cow/horse/ would substitute “horse”

for “cow” on all lines except those that contained
“black”

“The brown cow” -> “The brown horse”
“The black cow” -> “The black cow”

Transform
• The Transform command (y) operates like tr, it

does a one-to-one or character-to-character
replacement

• Transform accepts zero, one or two addresses
• [address[,address]]y/abc/xyz/

– every a within the specified address(es) is transformed
to an x. The same is true for b to y and c to z

– y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNO
PQRSTUVWXYZ/ changes all lower case characters on the
addressed line to upper case

– If you only want to transform specific characters (or a
word) in the line, it is much more difficult and requires
use of the hold space

Pattern and Hold spaces

• Pattern space: Workspace or temporary
buffer where a single line of input is held
while the editing commands are applied

• Hold space: Secondary temporary buffer
for temporary storage only

Pattern

Hold

in

out

h, H, g, G

Quit
• Quit causes sed to stop reading new input lines

and stop sending them to standard output
• It takes at most a single line address

– Once a line matching the address is reached, the script
will be terminated

– This can be used to save time when you only want to
process some portion of the beginning of a file

• Example: to print the first 100 lines of a file (like
head) use:
– sed '100q' filename
– sed will, by default, send the first 100 lines of filename

to standard output and then quit processing

Sed Advantages

• Regular expressions

• Fast

• Concise

Sed Drawbacks

• Hard to remember text from one line to
another

• Not possible to go backward in the file
• No way to do forward references

like /..../+1

• No facilities to manipulate numbers

• Cumbersome syntax

Awk

Programmable Filters

Aho Weinberger Kernighan

Why is it called AWK?

http://www.scholarsfirst.com/dept_compsci/_shared/kernighan.jpg

Awk Introduction
• awk's purpose: A general purpose programmable filter

that handles text (strings) as easily as numbers
– This makes awk one of the most powerful of the Unix

utilities

• awk processes fields while sed only processes lines
• nawk (new awk) is the new standard for awk

– Designed to facilitate large awk programs
– gawk is a free nawk clone from GNU

• awk gets it’s input from
– files
– redirection and pipes
– directly from standard input

AWK Highlights
• A programming language for handling common

data manipulation tasks with only a few lines of
code

• awk is a pattern-action language, like sed
• The language looks a little like C but automatically

handles input, field splitting, initialization, and
memory management
– Built-in string and number data types
– No variable type declarations

• awk is a great prototyping language
– Start with a few lines and keep adding until it does what

you want

Awk Features over Sed

• Convenient numeric processing

• Variables and control flow in the actions

• Convenient way of accessing fields within
lines

• Flexible printing

• Built-in arithmetic and string functions

• C-like syntax

BEGIN {action}

pattern {action}

pattern {action}

 .

 .

 .

pattern { action}

END {action}

Structure of an AWK Program

• An awk program consists of:
– An optional BEGIN segment

• For processing to execute prior to
reading input

– pattern - action pairs
• Processing for input data

• For each pattern matched, the
corresponding action is taken

– An optional END segment
• Processing after end of input data

Running an AWK Program

• There are several ways to run an Awk program
– awk 'program' input_file(s)

• program and input files are provided as command-line
arguments

– awk 'program'
• program is a command-line argument; input is taken from

standard input (yes, awk is a filter!)

– awk -f program_file input_files
• program is read from a file

Patterns and Actions

• Search a set of files for patterns.

• Perform specified actions upon lines or
fields that contain instances of patterns.

• Does not alter input files.

• Process one input line at a time

• This is similar to sed

Pattern-Action Structure
• Every program statement has to have a pattern or an

action or both

• Default pattern is to match all lines

• Default action is to print current record
• Patterns are simply listed; actions are enclosed in { }

• awk scans a sequence of input lines, or records, one
by one, searching for lines that match the pattern
– Meaning of match depends on the pattern

Patterns

• Selector that determines whether action is to be
executed

• pattern can be:
– the special token BEGIN or END
– regular expressions (enclosed with //)
– arithmetic relation operators
– string-valued expressions
– arbitrary combination of the above

• /NYU/ matches if the string “NYU” is in the record
• x > 0 matches if the condition is true
• /NYU/ && (name == "UNIX Tools")

BEGIN and END patterns

• BEGIN and END provide a way to gain
control before and after processing, for
initialization and wrap-up.
– BEGIN: actions are performed before the first

input line is read.

– END: actions are done after the last input line
has been processed.

Actions

• action may include a list of one or more C like
statements, as well as arithmetic and string expressions
and assignments and multiple output streams.

• action is performed on every line that matches pattern.
– If pattern is not provided, action is performed on every input line

– If action is not provided, all matching lines are sent to standard output.

• Since patterns and actions are optional, actions must
be enclosed in braces to distinguish them from pattern.

An Example

ls | awk '
BEGIN { print "List of html files:" }
/\.html$/ { print }
END { print "There you go!" }
'

List of html files:
index.html
as1.html
as2.html
There you go!

Variables

• awk scripts can define and use variables
BEGIN { sum = 0 }

{ sum ++ }

END { print sum }

• Some variables are predefined

Records

• Default record separator is newline
– By default, awk processes its input a line at a

time.

• Could be any other regular expression.
• RS: record separator

– Can be changed in BEGIN action

• NR is the variable whose value is the
number of the current record.

Fields

• Each input line is split into fields.
– FS: field separator: default is whitespace (1 or more

spaces or tabs)
– awk -Fc option sets FS to the character c

• Can also be changed in BEGIN

– $0 is the entire line

– $1 is the first field, $2 is the second field, ….

• Only fields begin with $, variables are unadorned

Simple Output From AWK

• Printing Every Line
– If an action has no pattern, the action is performed to all

input lines
• { print } will print all input lines to standard out
• { print $0 } will do the same thing

• Printing Certain Fields
– Multiple items can be printed on the same output line with

a single print statement
– { print $1, $3 }
– Expressions separated by a comma are, by default,

separated by a single space when output

Output (continued)

• NF, the Number of Fields
– Any valid expression can be used after a $ to indicate the

contents of a particular field
– One built-in expression is NF, or Number of Fields
– { print NF, $1, $NF } will print the number of fields,

the first field, and the last field in the current record
– { print $(NF-2) } prints the third to last field

• Computing and Printing
– You can also do computations on the field values and

include the results in your output
– { print $1, $2 * $3 }

Output (continued)

• Printing Line Numbers
– The built-in variable NR can be used to print line

numbers
– { print NR, $0 } will print each line prefixed with its

line number

• Putting Text in the Output
– You can also add other text to the output besides what is

in the current record
– { print "total pay for", $1, "is", $2 * $3 }

– Note that the inserted text needs to be surrounded by
double quotes

Fancier Output

• Lining Up Fields
– Like C, Awk has a printf function for producing

formatted output
– printf has the form

• printf(format, val1, val2, val3, …)

{ printf(“total pay for %s is $%.2f\n”,
 $1, $2 * $3) }

– When using printf, formatting is under your control so
no automatic spaces or newlines are provided by awk.
You have to insert them yourself.
{ printf(“%-8s %6.2f\n”, $1, $2 * $3) }

Selection
• Awk patterns are good for selecting specific lines

from the input for further processing
– Selection by Comparison

• $2 >= 5 { print }

– Selection by Computation
• $2 * $3 > 50 { printf(“%6.2f for %s\n”,
 $2 * $3, $1) }

– Selection by Text Content
• $1 == "NYU"
• /NYU/

– Combinations of Patterns
• $2 >= 4 || $3 >= 20

– Selection by Line Number
• NR >= 10 && NR <= 20

Arithmetic and variables

• awk variables take on numeric (floating
point) or string values according to context.

• User-defined variables are unadorned (they
need not be declared).

• By default, user-defined variables are
initialized to the null string which has
numerical value 0.

Computing with AWK

• Counting is easy to do with Awk
$3 > 15 { emp = emp + 1}
END { print emp, “employees worked

 more than 15 hrs”}

• Computing Sums and Averages is also simple
{ pay = pay + $2 * $3 }
END { print NR, “employees”
 print “total pay is”, pay
 print “average pay is”, pay/NR
 }

Handling Text

• One major advantage of Awk is its ability to
handle strings as easily as many languages handle
numbers

• Awk variables can hold strings of characters as
well as numbers, and Awk conveniently translates
back and forth as needed

• This program finds the employee who is paid the
most per hour:

 # Fields: employee, payrate
 $2 > maxrate { maxrate = $2; maxemp = $1 }

 END { print “highest hourly rate:”,
 maxrate, “for”, maxemp }

String Manipulation

• String Concatenation
– New strings can be created by combining old ones

 { names = names $1 " " }

END { print names }

• Printing the Last Input Line
– Although NR retains its value after the last input line

has been read, $0 does not

 { last = $0 }

END { print last }

Built-in Functions

• awk contains a number of built-in functions.
length is one of them.

• Counting Lines, Words, and Characters using
length (a poor man’s wc)
 { nc = nc + length($0) + 1
 nw = nw + NF
 }
END { print NR, "lines,", nw, "words,", nc,
 "characters" }

• substr(s, m, n) produces the substring of s that
begins at position m and is at most n characters
long.

Control Flow Statements

• awk provides several control flow statements for
making decisions and writing loops

• If-Then-Else
 $2 > 6 { n = n + 1; pay = pay + $2 * $3 }

END { if (n > 0)
 print n, "employees, total pay is",
pay, "average pay is", pay/n

 else
 print "no employees are paid more
than $6/hour"

 }

Loop Control

• While
interest1 - compute compound interest

input: amount, rate, years

output: compound value at end of each year

{ i = 1

while (i <= $3) {

printf(“\t%.2f\n”, $1 * (1 + $2) ^ i)

i = i + 1

}

}

Do-While Loops

• Do While
do {

statement1

}

while (expression)

For statements

• For
interest2 - compute compound interest
input: amount, rate, years

output: compound value at end of each year

{ for (i = 1; i <= $3; i = i + 1)

printf("\t%.2f\n", $1 * (1 + $2) ^ i)

}

Arrays

• Array elements are not declared

• Array subscripts can have any value:
– Numbers

– Strings! (associative arrays)

• Examples
– arr[3]="value"
– grade["Korn"]=40.3

Array Example

reverse - print input in reverse order by line

{ line[NR] = $0 } # remember each line

END {
for (i=NR; (i > 0); i=i-1) {
 print line[i]
}

 }

Useful One (or so)-liners

• END { print NR }
• NR == 10
• { print $NF }
• { field = $NF }

 END { print field }
• NF > 4
• $NF > 4
• { nf = nf + NF }

 END { print nf }

More One-liners

• /Jeff/ { nlines = nlines + 1 }

 END { print nlines }
• $1 > max { max = $1; maxline = $0 }

 END { print max, maxline }
• NF > 0
• length($0) > 80
• { print NF, $0}
• { print $2, $1 }
• { temp = $1; $1 = $2; $2 = temp; print }
• { $2 = ""; print }

Even More One-liners
• { for (i = NF; i > 0; i = i - 1)
printf(“%s “, $i)

 printf(“\n”)
 }
• { sum = 0
 for (i = 1; i <= NF; i = i + 1)
sum = sum + $i

 print sum
 }
• { for (i = 1; i <= NF; i = i + 1)

sum = sum $i }
 END { print sum }
}

Awk Variables

• $0, $1, $2, $NF

• NR - Number of records processed

• NF - Number of fields in current record

• FILENAME - name of current input file

• FS - Field separator, space or TAB by default

• OFS - Output field separator, space by default

• ARGC/ARGV - Argument Count, Argument Value
array
– Used to get arguments from the command line

Operators
• = assignment operator; sets a variable equal to a

value or string
• == equality operator; returns TRUE is both sides

are equal
• != inverse equality operator
• && logical AND
• || logical OR
• ! logical NOT
• <, >, <=, >= relational operators
• +, -, /, *, %, ^
• String concatenation

Built-In Functions
• Arithmetic

– sin, cos, atan, exp, int, log, rand, sqrt

• String
– length, substitution, find substrings, split strings

• Output
– print, printf, print and printf to file

• Special
– system - executes a Unix command

• system(“clear”) to clear the screen
• Note double quotes around the Unix command

– exit - stop reading input and go immediately to the END
pattern-action pair if it exists, otherwise exit the script

More Information

on the website

	Lecture 4
	Previously
	Today
	tr: TRanslate Characters
	tr (continued)
	tr uses
	Regular Expressions
	What Is a Regular Expression?
	Slide 9
	PowerPoint Presentation
	Slide 11
	Slide 12
	Character Classes
	Negated Character Classes
	More About Character Classes
	Named Character Classes
	Anchors
	Slide 18
	Repetition
	Slide 20
	Repetition Ranges
	Subexpressions
	grep
	Family Differences
	Syntax
	Protecting Regex Metacharacters
	Escaping Special Characters
	Egrep: Alternation
	Egrep: Repetition Shorthands
	Egrep: Repetition Shorthands cont
	Grep: Backreferences
	Practical Regex Examples
	grep Family
	grep Examples
	Fun with the Dictionary
	Other Notes
	Slide 37
	Sed: Stream-oriented, Non-Interactive, Text Editor
	Conceptual overview
	Sed Architecture
	Scripts
	Scripts (continued)
	Sed Flow of Control
	sed Commands
	Addressing
	Addressing (continued)
	Commands
	Address and Command Examples
	Multiple Commands
	Sed Commands
	sed Syntax
	Print
	Substitute
	Substitute Examples
	Replacement Patterns
	Replacement Pattern Examples
	Append, Insert, and Change
	Append and Insert
	Change
	Change Examples
	Using !
	Transform
	Pattern and Hold spaces
	Quit
	Sed Advantages
	Sed Drawbacks
	Awk
	Why is it called AWK?
	Awk Introduction
	AWK Highlights
	Awk Features over Sed
	Structure of an AWK Program
	Running an AWK Program
	Patterns and Actions
	Pattern-Action Structure
	Patterns
	BEGIN and END patterns
	Actions
	An Example
	Variables
	Records
	Fields
	Simple Output From AWK
	Output (continued)
	Slide 85
	Fancier Output
	Selection
	Arithmetic and variables
	Computing with AWK
	Handling Text
	String Manipulation
	Built-in Functions
	Control Flow Statements
	Loop Control
	Do-While Loops
	For statements
	Arrays
	Array Example
	Useful One (or so)-liners
	More One-liners
	Even More One-liners
	Awk Variables
	Operators
	Built-In Functions
	More Information

