Assessment of Abbeville County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Abbeville County Registration and Elections Commission
Prepared By: South Carolina National Guard Defensive Cyber Operations Element
October 31, 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>5</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>6</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>8</td>
</tr>
</tbody>
</table>
Executive Summary

On October 25, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Abbeville County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Chief Warrant Officer 2 Stephen Szabo. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Abbeville County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information; 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 3 "high" vulnerabilities and 1 “medium” vulnerability that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered

It was later discovered that

While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your county should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your county again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment

1.1 Threat Level: Medium

Description:

Impact:

Recommendation:

2. Unity Workstation Configuration Assessment

2.1 Threat Level: High

Description:

Impact:

Recommendation:

2.2

Threat Level: High
3. Data-Transfer Methodologies Assessment

3.1 Threat Level: High

Description: [Redacted]

Impact: [Redacted]

Recommendation: [Redacted]

- [Redacted]
 - [Redacted]
 - [Redacted]
 - [Redacted]
Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", “Escort Name” (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE’s recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure. The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMDDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE’s recommendation that an in-depth follow-on assessment be conducted on the county-owned workstations that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important...
to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County's cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County's portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations

(Passwords, Account Lockout, Security Auditing, and Other Good Practices)

(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- **Enforce password history = 12 passwords remembered**
 - This will not allow the last 12 passwords to be reused
- **Maximum password age = 120 days**
 - This will set mandatory password changes every 120 days
- **Minimum password age = 3 days**
 - This will not allow a password to be changed until 3 days after the last password change
- **Minimum password length = 14 characters**
 - This will force any password to be at least 14 characters long
- **Password must meet complexity requirements = Enabled**
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: ~!@#$%^&*_-+=`\|(){}[]:;"'<>,.?/
- **Store password using reversible encryption = Disabled**
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain at least 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain at least one number (for example, 0-9).
- Contain at least one special character (for example, !$%^&*()_+|~-=\`{}[]:;"'<>,.?/).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
• Contain work-related information such as building names, system commands, sites, companies, hardware, or software.
• Contain number patterns such as aaabbb, qwerty, zyxwvuts, or 123321.
• Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
• Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(NOTE: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*$ThisMorning!).

(NOTE: Do not use this specific example as passwords!)

Password Protection

• Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
• User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
• All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
• All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
• Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
• Passwords must not be inserted into email messages or other forms of electronic communication.
• Passwords must not be revealed over the phone to anyone.
• Passwords will not be revealed on questionnaires or security forms.
• Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
• Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, co-workers while on vacation, and family members.
• Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
• If your password is suspected as being compromised, you must report the incident and change all passwords.
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
- When maximum event log size is reached = Do not overwrite events (Clear logs manually)
Other Good Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.
Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.

This reports and material represents the South Carolina Military Department’s best efforts to respond to a request for assistance by the South Carolina State Elections Commission. The South Carolina Military Departments makes no representations or warranties of any kind, express or implied as to the completeness, accuracy, or reliability of any system or systems examined. The findings and recommendations included in this report should be reviewed and only implemented after careful consideration by the South Carolina State Election Commission. Any reliance on the information provided is strictly at your own risk.
Assessment of Aiken County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Aiken County Registration and Elections Department
Prepared By: South Carolina National Guard Defensive Cyber Operations Element
October 31, 16
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>5</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>6</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>8</td>
</tr>
</tbody>
</table>
Executive Summary

On October 18, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Aiken County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Warrant Officer 1 James Billingsley. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Aiken County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information: 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 1 "critical" vulnerability and 2 “high” vulnerabilities that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered [redacted]

It was later discovered that [redacted]

While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your county should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your county again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment
 Nothing Significant to Report

2. Unity Workstation Configuration Assessment

2.1 Threat Level: High
 Description:
 Impact:
 Recommendation:

2.2 Threat Level: Critical
 Description:
 Impact:
 Recommendation:
3. Data-Transfer Methodologies Assessment

3.1 Threat Level: High

Description:

Impact:

Recommendation:
Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", “Escort Name” (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE’s recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure.

The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMDDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE's recommendation that an in-depth follow-on assessment be conducted on the county-owned workstation(s) that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important
to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County's cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County's portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations

(Passwords, Account Lockout, Security Auditing, and Other Good Practices)

(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- Enforce password history = 12 passwords remembered
 - This will not allow the last 12 passwords to be reused
- Maximum password age = 120 days
 - This will set mandatory password changes every 120 days
- Minimum password age = 3 days
 - This will not allow a password to be changed until 3 days after the last password change
- Minimum password length = 14 characters
 - This will force any password to be at least 14 characters long
- Password must meet complexity requirements = Enabled
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: ~!@#$%^&*_-+=`|(){}[]:;"'<>,.?/
- Store password using reversible encryption = Disabled
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain at least 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain at least one number (for example, 0-9).
- Contain at least one special character (for example, !$%^&*()-_=+|{}[]:;"'<>,.?/).

There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(Note: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*$&!ThisMorning!).

(Note: Do not use this specific example as passwords!)

Password Protection

- Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
- User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
- All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
- All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
- Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
- Passwords must not be inserted into email messages or other forms of electronic communication.
- Passwords must not be revealed over the phone to anyone.
- Passwords will not be revealed on questionnaires or security forms.
- Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
- Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, co-workers while on vacation, and family members.
- Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
- If your password is suspected as being compromised, you must report the incident and change all passwords.
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs
By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
- When maximum event log size is reached = Do not overwrite events (Clear logs manually)

Other Recommended Best Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it
is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on
the workstation much smaller.

Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation.
One way that malicious users violate this is if an authorized user steps away from the computer without “locking”
it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation
and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go
to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will
be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next
time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before
walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and
the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features
include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a
computer could become compromised by a malicious person increases. It is a good practice to disable all features
that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s
operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By
removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that
computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability
back). This can normally be done with a Philips head screwdriver but different models of computers will vary.
Assessment of Allendale County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Allendale County Voter Registration and Elections Commission
Prepared By: South Carolina National Guard Defensive Cyber Operations Element

October 31, 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>5</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>7</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>9</td>
</tr>
</tbody>
</table>
Executive Summary

On October 21, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Allendale County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Second Lieutenant Leo Pate III. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Allendale County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information: 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 1 “critical” vulnerability, and 4 "high" vulnerabilities that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered It was later discovered that While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your County should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your County again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment

Nothing Significant to Report

2. Unity Workstation Configuration Assessment

2.1

Threat Level: Critical

Description: [redacted]

Impact: [redacted]

Recommendation: [redacted]

2.2

Threat Level: High

Description: [redacted]

Impact: [redacted]

Recommendation: [redacted]

2.3

Threat Level: High

Description: [redacted]
Description:

Impact:

Recommendation:

2.4

Threat Level: High

Description:

Impact:

Recommendation:

3. Data-Transfer Methodologies Assessment

3.1

Threat Level: High

Description:

UNCLASSIFIED//FOUO
Impact:

Recommendation:

•

•

•

•
Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", "Escort Name" (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE’s recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure. The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMDDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE’s recommendation that an in-depth follow-on assessment be conducted on the county-owned workstations that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important
to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County’s cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County's portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations
(Passwords, Account Lockout, Security Auditing, and Other Good Practices)
(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- Enforce password history = 12 passwords remembered
 - This will not allow the last 12 passwords to be reused
- Maximum password age = 120 days
 - This will set mandatory password changes every 120 days
- Minimum password age = 3 days
 - This will not allow a password to be changed until 3 days after the last password change
- Minimum password length = 14 characters
 - This will force any password to be at least 14 characters long
- Password must meet complexity requirements = Enabled
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: ~!@#$%^&*_-+=`|(){}[]:;"'<>,.?/
- Store password using reversible encryption = Disabled
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain at least 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain at least one number (for example, 0-9).
- Contain at least one special character (for example, !$%^&*()_+|~-=\`{}[]:;"'<>,.?/).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
• Contain work-related information such as building names, system commands, sites, companies, hardware, or software.
• Contain number patterns such as aaabbb, qwerty, zyxwvuts, or 123321.
• Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
• Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(NOTE: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*@!$ThisMorning!).

(NOTE: Do not use this specific example as passwords!)

Password Protection

• Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
• User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
• All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
• All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
• Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
• Passwords must not be inserted into email messages or other forms of electronic communication.
• Passwords must not be revealed over the phone to anyone.
• Passwords will not be revealed on questionnaires or security forms.
• Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
• Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, co-workers while on vacation, and family members.
• Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
• If your password is suspected as being compromised, you must report the incident and change all passwords.
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
- When maximum event log size is reached = Do not overwrite events (Clear logs manually)
Other Good Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.
Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.

This report and material represents the South Carolina Military Department’s best efforts to respond to a request for assistance by the South Carolina State Elections Commission. The South Carolina Military Departments makes no representations or warranties of any kind, express or implied as to the completeness, accuracy, or reliability of any system or systems examined. The findings and recommendations included in this report should be reviewed and only implemented after careful consideration by the South Carolina State Election Commission. Any reliance on the information provided is strictly at your own risk.
Assessment of Anderson County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Anderson County Registration and Elections Department
Prepared By: South Carolina National Guard Defensive Cyber Operations Element
October 31, 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>5</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>6</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>8</td>
</tr>
</tbody>
</table>
Executive Summary

On October 18, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Anderson County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Master Sergeant Ricky Chapman (lead) and Staff Sergeant Marquis Benton. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Anderson County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information; 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 1 “critical” vulnerability and 2 "high" vulnerabilities that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered

While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your county should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your county again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment

Nothing Significant to Report

2. Unity Workstation Configuration Assessment

2.1 Evidence of Previous Internet Connection to Unity Workstations “Unity 1” and “Unity 2 (Laptop)”

Threat Level: Critical

Description:

Impact:

Recommendation:

2.2

Threat Level: High

Description:
Impact:

Recommendation:

3. Data-Transfer Methodologies Assessment

3.1

Threat Level: High

Description:

Impact:

Recommendation:
Other Observations and Recommendations

The Elections Director, Katy Smith, is a subject matter expert on the election process. She articulated the process from memory without the help of notes or resources. She holds accountability for the election process and demonstrated security practices. Her staff also explained their roles and responsibilities relating to the election process without the help of notes or resources. Mrs. Smith produced written policies and procedures outlining the entire voter registration and elections process, to include roles and responsibilities of the department. Anderson County’s techniques, policies and procedures could be considered for use as an example of what other Counties could be doing as they begin moving to improve their security posture.

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", “Escort Name” (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE's recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure. The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMDDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not...
been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE’s recommendation that an in-depth follow-on assessment be conducted on the county-owned workstation(s) that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County’s cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County’s portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations

(Passwords, Account Lockout, Security Auditing, and Other Good Practices)

(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- **Enforce password history** = 12 passwords remembered
 - This will not allow the last 12 passwords to be reused
- **Maximum password age** = 120 days
 - This will set mandatory password changes every 120 days
- **Minimum password age** = 3 days
 - This will not allow a password to be changed until 3 days after the last password change
- **Minimum password length** = 14 characters
 - This will force any password to be at least 14 characters long
- **Password must meet complexity requirements** = Enabled
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: ~!@#$%^&*_-+=`|(){}[]:;"'<>,.?/
- **Store password using reversible encryption** = Disabled
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain at least 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain at least one number (for example, 0-9).
- Contain at least one special character (for example, !$%^&*()+-|\~\`\{}\[]\:"<>.?/).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
• Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
• Contain work-related information such as building names, system commands, sites, companies, hardware, or software.
• Contain number patterns such as aaabbb, qwerty, zyxwvuts, or 123321.
• Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
• Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, “This May Be One Way To Remember” could become the password TmB1w2R! or another variation.

(NOTE: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*!$ThisMorning!).

(NOTE: Do not use this specific example as passwords!)

Password Protection

• Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
• User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
• All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
• All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
• Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
• Passwords must not be inserted into email messages or other forms of electronic communication.
• Passwords must not be revealed over the phone to anyone.
• Passwords will not be revealed on questionnaires or security forms.
• Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
• Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, co-workers while on vacation, and family members.
• Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
• If your password is suspected as being compromised, you must report the incident and change all passwords.
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:
Other Recommended Best Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.
Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.
Assessment of Bamberg County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Bamberg County Voter’s Registration Department
Prepared By: South Carolina National Guard Defensive Cyber Operations Element
October 31, 2016

UNCLASSIFIED//FOUO
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>6</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>8</td>
</tr>
<tr>
<td>Annex A: SCDDDCOE Unity Image Configuration Recommendations</td>
<td>10</td>
</tr>
</tbody>
</table>
Executive Summary

On October 21, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Bamberg County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Second Lieutenant Leo Pate III. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Bamberg County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information: 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 4 "high" vulnerabilities and 3 “medium” vulnerabilities that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered . It was later discovered that . While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your County should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your County again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment

1.1 Threat Level: High

Description:

Impact:

Recommendation:

1.2 Threat Level: Medium

Description:

Impact:

Recommendation:

2. Unity Workstation Configuration Assessment

2.1 Threat Level: High

Description:
Impact:

Recommendation:

2.2

Threat Level: High

Description:

Impact:

Recommendation:

2.3

Threat Level: Medium

Description:

Impact:

Recommendation:
2.4

Threat Level: Medium

Description:

Impact:

Recommendation:

3. Data-Transfer Methodologies Assessment

3.1

Threat Level: High

Description:

Impact:

Recommendation:

-

-

-

-

-
Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", “Escort Name” (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE’s recommendation that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure. The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMDDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE’s recommendation that an in-depth follow-on assessment be conducted on the county-owned workstations that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important
to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County’s cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County's portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations

(Passwords, Account Lockout, Security Auditing, and Other Good Practices)

(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- Enforce password history = 12 passwords remembered
 - This will not allow the last 12 passwords to be reused
- Maximum password age = 120 days
 - This will set mandatory password changes every 120 days
- Minimum password age = 3 days
 - This will not allow a password to be changed until 3 days after the last password change
- Minimum password length = 14 characters
 - This will force any password to be at least 14 characters long
- Password must meet complexity requirements = Enabled
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: ~!@#$%^&*_-+=`|(){}[]:;"'<>,?/
- Store password using reversible encryption = Disabled
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain at least 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain at least one number (for example, 0-9).
- Contain at least one special character (for example, !$%^&*()_+-=\{\}][;"'<,>/).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
Contain work-related information such as building names, system commands, sites, companies, hardware, or software.

- Contain number patterns such as aaabbb, qwerty, zyxwvuts, or 123321.
- Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
- Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(NOTE: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*&!$ThisMorning!).

(NOTE: Do not use this specific example as passwords!)

Password Protection

- Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
- User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
- All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
- All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
- Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
- Passwords must not be inserted into email messages or other forms of electronic communication.
- Passwords must not be revealed over the phone to anyone.
- Passwords will not be revealed on questionnaires or security forms.
- Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
- Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, co-workers while on vacation, and family members.
- Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
- If your password is suspected as being compromised, you must report the incident and change all passwords.
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user's attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
- When maximum event log size is reached = Do not overwrite events (Clear logs manually)
Other Good Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.
Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.
Assessment of Barnwell County’s
Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Barnwell County Voter’s Registration & Elections Department
Prepared By: South Carolina National Guard Defensive Cyber Operations Element

October 31, 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>5</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>6</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>8</td>
</tr>
</tbody>
</table>
Executive Summary

On October 21, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Barnwell County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Second Lieutenant Leo Pate III. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Barnwell County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information; 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 2 "high" vulnerabilities and 1 “medium” vulnerabilities that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered [Redacted]. It was later discovered that [Redacted]. While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your County should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your County again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment

Nothing Significant to Report

2. Unity Workstation Configuration Assessment

2.1 [Redacted]
Threat Level: High
Description: [Redacted]
Impact: [Redacted]
Recommendation: [Redacted]

2.2 [Redacted]
Threat Level: Medium
Description: [Redacted]
Impact: [Redacted]
Recommendation: [Redacted]
3. Data-Transfer Methodologies Assessment

3.1 Threat Level: High

Description:

Impact:

Recommendation:

•

•

•
Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", "Escort Name" (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE’s recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure. The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMDDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE's recommendation that an in-depth follow-on assessment be conducted on the county-owned workstations that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important...
to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County's cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County's portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations
(Passwords, Account Lockout, Security Auditing, and Other Good Practices)
(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- Enforce password history = 12 passwords remembered
 - This will not allow the last 12 passwords to be reused
- Maximum password age = 120 days
 - This will set mandatory password changes every 120 days
- Minimum password age = 3 days
 - This will not allow a password to be changed until 3 days after the last password change
- Minimum password length = 14 characters
 - This will force any password to be at least 14 characters long
- Password must meet complexity requirements = Enabled
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: ~!@#$%^&*-_+=`|\(){}[\]:'",<>?,./
- Store password using reversible encryption = Disabled
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain at least 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain at least one number (for example, 0-9).
- Contain at least one special character (for example, !$%^&*()_+-|\{}:;"'<>,.?/).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
- Contain work-related information such as building names, system commands, sites, companies, hardware, or software.
- Contain number patterns such as aaaa, qwerty, zyxwvuts, or 123321.
- Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
- Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(Note: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*!$ThisMorning!).

(Note: Do not use this specific example as passwords!)

Password Protection

- Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
- User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
- All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
- All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
- Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
- Passwords must not be inserted into email messages or other forms of electronic communication.
- Passwords must not be revealed over the phone to anyone.
- Passwords will not be revealed on questionnaires or security forms.
- Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
- Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, co-workers while on vacation, and family members.
- Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
- If your password is suspected as being compromised, you must report the incident and change all passwords.

(Note: Do not use any of the specific examples given as passwords!)

UNCLASSIFIED//FOUO
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
- When maximum event log size is reached = Do not overwrite events (Clear logs manually)
Other Good Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.
Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.

This reports and material represents the South Carolina Military Department’s best efforts to respond to a request for assistance by the South Carolina State Elections Commission. The South Carolina Military Departments makes no representations or warranties of any kind, express or implied as to the completeness, accuracy, or reliability of any system or systems examined. The findings and recommendations included in this report should be reviewed and only implemented after careful consideration by the South Carolina State Election Commission. Any reliance on the information provided is strictly at your own risk.
Assessment of Beaufort County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Barnwell County Voter’s Registration Department
Prepared By: South Carolina National Guard Defensive Cyber Operations Element
October 31, 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>5</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>6</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>8</td>
</tr>
</tbody>
</table>
Executive Summary

On October 19, 2016, the South Carolina Military Department Defense Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Beaufort County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Second Lieutenant Leo Pate III. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Beaufort County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information; 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 4 "high" vulnerabilities that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered ___It was later discovered that___ While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your County should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your County again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment

1.1 Threat Level: High

Description: [Redacted]

Impact: [Redacted]

Recommendation: [Redacted]

1.2 Threat Level: High

Description: [Redacted]

Impact: [Redacted]

Recommendation: [Redacted]
2. Unity Workstation Configuration Assessment

2.1 Threat Level: High

Description: ...

Impact: ...

Recommendation: ..

3. Data-Transfer Methodologies Assessment

3.1 Threat Level: High

Description: ...

Impact: ...

Recommendation: ..

• ...

• ...

• ...
Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", “Escort Name” (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE’s recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure. The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMDDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE’s recommendation that an in-depth follow-on assessment be conducted on the county-owned workstations that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important
to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County’s cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County’s portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations

(Passwords, Account Lockout, Security Auditing, and Other Good Practices)

(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- Enforce password history = 12 passwords remembered
 - This will not allow the last 12 passwords to be reused
- Maximum password age = 120 days
 - This will set mandatory password changes every 120 days
- Minimum password age = 3 days
 - This will not allow a password to be changed until 3 days after the last password change
- Minimum password length = 14 characters
 - This will force any password to be at least 14 characters long
- Password must meet complexity requirements = Enabled
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: ~!@$%^&*_-+=`|(){}[]:;"'<>,.?/
- Store password using reversible encryption = Disabled
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain at least 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain at least one number (for example, 0-9).
- Contain at least one special character (for example, !@$%^&*()-=\|{}[]:;"'<>?,./).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
• Contain work-related information such as building names, system commands, sites, companies, hardware, or software.
• Contain number patterns such as aaabbb, qwerty, zyxwvuts, or 123321.
• Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
• Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, “This May Be One Way To Remember” could become the password TmB1w2R! or another variation.

(NOTE: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*&!$ThisMorning!).

(NOTE: Do not use this specific example as passwords!)

Password Protection

• Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
• User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
• All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
• All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
• Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
• Passwords must not be inserted into email messages or other forms of electronic communication.
• Passwords must not be revealed over the phone to anyone.
• Passwords will not be revealed on questionnaires or security forms.
• Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
• Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, co-workers while on vacation, and family members.
• Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
• If your password is suspected as being compromised, you must report the incident and change all passwords.

UNCLASSIFIED//FOUO
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
- When maximum event log size is reached = Do not overwrite events (Clear logs manually)
Other Good Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it's good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.
Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.
Assessment of Berkeley County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Berkeley County Voter Registration Department
Prepared By: South Carolina National Guard Defensive Cyber Operations Element
October 31, 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>5</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>6</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>8</td>
</tr>
</tbody>
</table>
Executive Summary

On October 17, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Berkeley County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Second Lieutenant Leo Pate III. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Berkeley County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information: 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 4 "high" vulnerabilities that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered

It was later discovered that

While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your County should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your County again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment

1.1 Threat Level: High
Description:
Impact:
Recommendation:

1.2 Threat Level: High
Description:
Impact:
Recommendation:

2. Unity Workstation Configuration Assessment

2.1 Threat Level: High
Description:

UNCLASSIFIED//FOUO
Impact:

Recommendation:

3. Data-Transfer Methodologies Assessment

3.1

Threat Level: High

Description:

Impact:

Recommendation:

•

•

•

•
Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", “Escort Name” (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE’s recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure.

The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMDDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE’s recommendation that an in-depth follow-on assessment be conducted on the county-owned workstations that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina.
It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County's cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County's portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations
(Passwords, Account Lockout, Security Auditing, and Other Good Practices)
(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- Enforce password history = 12 passwords remembered
 - This will not allow the last 12 passwords to be reused
- Maximum password age = 120 days
 - This will set mandatory password changes every 120 days
- Minimum password age = 3 days
 - This will not allow a password to be changed until 3 days after the last password change
- Minimum password length = 14 characters
 - This will force any password to be at least 14 characters long
- Password must meet complexity requirements = Enabled
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: ~!@#$%^&*_-+=`|(){}[]:;"'<>,.?/
- Store password using reversible encryption = Disabled
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain at least 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain at least one number (for example, 0-9).
- Contain at least one special character (for example, !$%^&*()-_=+\|\{}\`:;"'<>,.?/).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
- Contain work-related information such as building names, system commands, sites, companies, hardware, or software.
- Contain number patterns such as aaabbb, qwerty, zyxwvuts, or 123321.
- Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
- Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(NOTE: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*&!$ThisMorning!).

(NOTE: Do not use this specific example as passwords!)

Password Protection

- Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
- User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
- All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
- All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
- Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
- Passwords must not be inserted into email messages or other forms of electronic communication.
- Passwords must not be revealed over the phone to anyone.
- Passwords will not be revealed on questionnaires or security forms.
- Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
- Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, co-workers while on vacation, and family members.
- Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
- If your password is suspected as being compromised, you must report the incident and change all passwords.

UNCLASSIFIED//FOUO
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
- When maximum event log size is reached = Do not overwrite events (Clear logs manually)
Other Good Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.
Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.

This reports and material represents the South Carolina Military Department’s best efforts to respond to a request for assistance by the South Carolina State Elections Commission. The South Carolina Military Departments makes no representations or warranties of any kind, express or implied as to the completeness, accuracy, or reliability of any system or systems examined. The findings and recommendations included in this report should be reviewed and only implemented after careful consideration by the South Carolina State Election Commission. Any reliance on the information provided is strictly at your own risk.
Assessment of Calhoun County’s
Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Calhoun County Voter Registration and Elections Department
Prepared By: South Carolina National Guard Defensive Cyber Operations Element

October 31, 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td></td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>5</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>6</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>8</td>
</tr>
</tbody>
</table>
Executive Summary

On October 18, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Calhoun County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Warrant Officer 1 James Billingsley. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Calhoun County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information; 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 3 "high" vulnerabilities that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered

It was later discovered that

While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your county should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your county again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment

Nothing Significant to Report

2. Unity Workstation Configuration Assessment

2.1

Threat Level: High

Description:

Impact:

Recommendation:

2.2

Threat Level: High

Description:

Impact:

Recommendation:
3. Data-Transfer Methodologies Assessment

3.1 Threat Level: High

Description:

Impact:

Recommendation:

•

•

•

•
Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", “Escort Name” (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE’s recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure.

The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMDDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE’s recommendation that an in-depth follow-on assessment be conducted on the county-owned workstations that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important
to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County’s cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County's portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: **Unity Image Configuration Recommendations**

(Passwords, Account Lockout, Security Auditing, and Other Good Practices)

(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- Enforce password history = 12 passwords remembered
 - This will not allow the last 12 passwords to be reused
- Maximum password age = 120 days
 - This will set mandatory password changes every 120 days
- Minimum password age = 3 days
 - This will not allow a password to be changed until 3 days after the last password change
- Minimum password length = 14 characters
 - This will force any password to be at least 14 characters long
- Password must meet complexity requirements = Enabled
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: `!@#$%^&*_-+=` | () {} []:;"'<>,.?/
- Store password using reversible encryption = Disabled
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain **at least** 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain **at least** one number (for example, 0-9).
- Contain **at least** one special character (for example, `!$%^&*_-+=` | () {} []:;"'<>,.?/).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
Contain work-related information such as building names, system commands, sites, companies, hardware, or software.

- Contain number patterns such as aaabbb, qwerty, zywxvuts, or 123321.
- Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
- Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(NOTE: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*$!$ThisMorning!).

(NOTE: Do not use this specific example as passwords!)

Password Protection

- Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
- User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
- All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
- All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
- Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
- Passwords must not be inserted into email messages or other forms of electronic communication.
- Passwords must not be revealed over the phone to anyone.
- Passwords will not be revealed on questionnaires or security forms.
- Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
- Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, coworkers while on vacation, and family members.
- Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
- If your password is suspected as being compromised, you must report the incident and change all passwords.

(NOTE: Do not use these specific examples as passwords!)
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
- When maximum event log size is reached = Do not overwrite events (Clear logs manually)
Other Good Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.
Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.
Assessment of Charleston County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Charleston County Elections & Voter Registration Department
Prepared By: South Carolina National Guard Defensive Cyber Operations Element

October 31, 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>5</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>6</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>8</td>
</tr>
</tbody>
</table>
Executive Summary

On October 18, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Charleston County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Second Lieutenant Leo Pate III. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Charleston County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information; 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 1 “critical” vulnerability, and 2 "high" vulnerabilities that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered... It was later discovered that... While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your County should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your County again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment

Nothing significant to report.

2. Unity Workstation Configuration Assessment

2.1 Threat Level: Critical

Description:

Impact:

Recommendation:

•
•
•

2.2 Threat Level: High

Description:

Impact:

Recommendation: T

3. Data-Transfer Methodologies Assessment

3.1 Threat Level: High

Description: T

Impact: T

Recommendation:

• T

• T

• T
Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", “Escort Name” (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE’s recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure. The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMDDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE’s recommendation that an in-depth follow-on assessment be conducted on the county-owned workstations that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important...
to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County's cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County's portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations
(Passwords, Account Lockout, Security Auditing, and Other Good Practices)
(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- Enforce password history = 12 passwords remembered
 - This will not allow the last 12 passwords to be reused
- Maximum password age = 120 days
 - This will set mandatory password changes every 120 days
- Minimum password age = 3 days
 - This will not allow a password to be changed until 3 days after the last password change
- Minimum password length = 14 characters
 - This will force any password to be at least 14 characters long
- Password must meet complexity requirements = Enabled
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: ~!@#$%^&*_-+=`\{|}[]:;"'<>,.?/
- Store password using reversible encryption = Disabled
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain at least 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain at least one number (for example, 0-9).
- Contain at least one special character (for example, !$%^&*()-_=\|{}[]:;"'<>,.?/).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
• Contain work-related information such as building names, system commands, sites, companies, hardware, or software.
• Contain number patterns such as aaabbb, qwerty, zyxwvuts, or 123321.
• Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
• Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(NOTE: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*@!$ThisMorning!).

(NOTE: Do not use this specific example as passwords!)

Password Protection

• Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
• User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
• All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
• All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
• Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
• Passwords must not be inserted into email messages or other forms of electronic communication.
• Passwords must not be revealed over the phone to anyone.
• Passwords will not be revealed on questionnaires or security forms.
• Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
• Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, co-workers while on vacation, and family members.
• Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
• If your password is suspected as being compromised, you must report the incident and change all passwords.
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
- When maximum event log size is reached = Do not overwrite events (Clear logs manually)
Other Good Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.
Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.

This reports and material represents the South Carolina Military Department’s best efforts to respond to a request for assistance by the South Carolina State Elections Commission. The South Carolina Military Departments makes no representations or warranties of any kind, express or implied as to the completeness, accuracy, or reliability of any system or systems examined. The findings and recommendations included in this report should be reviewed and only implemented after careful consideration by the South Carolina State Election Commission. Any reliance on the information provided is strictly at your own risk.
Assessment of Cherokee County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Cherokee County Voter Registration and Elections Department
Prepared By: South Carolina National Guard Defensive Cyber Operations Element

October 31, 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>5</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>6</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>8</td>
</tr>
</tbody>
</table>
Executive Summary

On October 19, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Cherokee County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Master Sergeant Ricky Chapman (lead) and Staff Sergeant Marquis Benton. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Cherokee County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information; 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 1 “critical” vulnerability and 2 "high" vulnerabilities that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your county should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your county again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment
Nothing Significant to Report

2. Unity Workstation Configuration Assessment

2.1 Threat Level: Critical
Description:

Impact:

Recommendation:

2.2 Threat Level: High
Description:

Impact:

Recommendation:
3. Data-Transfer Methodologies Assessment

3.1 Threat Level: High

Description:

Impact:

Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", “Escort Name” (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE’s recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure. The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMDDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE’s recommendation that an in-depth follow-on assessment be conducted on the county-owned workstations that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important to express how crucial it is that the County Election Commissioners have IT support from County IT
personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMD/DCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County’s cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County’s portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDD/DCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMD/DCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations

(Passwords, Account Lockout, Security Auditing, and Other Good Practices)

(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- Enforce password history = 12 passwords remembered
 - This will not allow the last 12 passwords to be reused
- Maximum password age = 120 days
 - This will set mandatory password changes every 120 days
- Minimum password age = 3 days
 - This will not allow a password to be changed until 3 days after the last password change
- Minimum password length = 14 characters
 - This will force any password to be at least 14 characters long
- Password must meet complexity requirements = Enabled
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: ~!@#$%^&*_-+=`|(){}[]:;"'<>,.?/
- Store password using reversible encryption = Disabled
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain at least 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain at least one number (for example, 0-9).
- Contain at least one special character (for example, !$%^&*()_+-=\{|\}';"<>?,./).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
• Contain work-related information such as building names, system commands, sites, companies, hardware, or software.
• Contain number patterns such as aaabbb, qwerty, zyxwvuts, or 123321.
• Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
• Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(NOTE: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*!&$ThisMorning!).

(NOTE: Do not use this specific example as passwords!)

Password Protection

- Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
- User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
- All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
- All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
- Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
- Passwords must not be inserted into email messages or other forms of electronic communication.
- Passwords must not be revealed over the phone to anyone.
- Passwords will not be revealed on questionnaires or security forms.
- Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
- Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, co-workers while on vacation, and family members.
- Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
- If your password is suspected as being compromised, you must report the incident and change all passwords.

Account Lockout

UNCLASSIFIED//FOUO
Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
- When maximum event log size is reached = Do not overwrite events (Clear logs manually)

Other Good Practices
Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.

Use of Screensaver Password
It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.

This report and material represents the South Carolina Military Department’s best efforts to respond to a request for assistance by the South Carolina State Elections Commission. The South Carolina Military Departments makes no representations or warranties of any kind, express or implied as to the completeness, accuracy, or reliability of any system or systems examined. The findings and recommendations included in this report should be reviewed and only implemented after careful consideration by the South Carolina State Election Commission. Any reliance on the information provided is strictly at your own risk.
Assessment of Chester County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Chester County Voter Registration Department
Prepared By: South Carolina National Guard Defensive Cyber Operations Element

October 31, 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>6</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>7</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>10</td>
</tr>
</tbody>
</table>
Executive Summary

On October 26, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Chester County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Staff Sergeant Kenneth Crawford (lead) and Warrant Officer 1 James Billingsley. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Chester County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information; 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 2 “critical” vulnerabilities and 3 "high" vulnerabilities that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered... It was later discovered that... While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your county should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your county again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment

Nothing Significant to Report

2. Unity Workstation Configuration Assessment

2.1

Threat Level: Critical

Description:

Impact:

Recommendation:

•

•

•

2.2

Threat Level: Critical

Description:

Impact:
Recommendation:

- []
- []
- []
- []

2.3

Threat Level: High

Description:

Impact:

Recommendation:

- []
- []
- []
- []
3. Data-Transfer Methodologies Assessment

3.1 Threat Level: High

Description:

Impact:

Recommendation:

•

•

•

•
Other Observations and Recommendations

Logs provide a means to track changes in an information system. These logs should be reviewed periodically to detect changes to an information system and for indicators of possible compromise. It is the SCMDDDcoe’s recommendation to review Unity workstations quarterly by a skilled information security practitioner and additionally 1 month prior to elections to provide time to mitigate any issues that arise during the audit.

It was discovered that Chester County only had one person with access to the State’s FTP server. This is a risk as it is a single point of failure in the face of emergencies or compromised credentials. It is the SCMDDDcoe’s recommendation that there should be at least 2 user accounts for the FTP server. Additionally, having a witness present when uploading or downloading data to or from the FTP server onto removable media provides some mitigation of insider threats and provides nonrepudiation.

Secure storage, as in a safe or strongbox, with access control policies in place, keep sensitive items that are easily tampered from becoming compromised. It is the SCMDDDcoe’s recommendation to use secure storage for all USBs, PEBs, and Flash cards when not in use.

Chain of custody documents are a means to hold individuals accountable for maintaining control of sensitive items not locked in secured storage. A dual signature chain of custody document with serial numbers can be filled out when items are transferred between responsible parties. This will maintain accountability of those items and may prevent them from being tampered if policies are followed or provide a means to challenge or trace when a breach took place. Recommendations for chain of custody on all USBs, PEBs, and Flash cards.

Asset management provides tracking and accountability for inventories by quantity and serial number. Asset management and auditing inventories helps prevent loss or swapping out a good asset for a compromised asset. It is the SCMDDDcoe’s recommendation to track items by serial number if receiving or issuing and additionally at periodic audits. The County should also utilize the State’s asset management system (if they don’t have a digital solution already) and keep a local inventory on a digital and paper backup in case discrepancies arise.

Fencing does not enclose the rear and sides of building, additionally doors on rear and sides may be unsecure and are not captured on CCTV. It is the SCMDDDcoe’s recommendation fence in the rear and sides of the election facility and place locks on storage areas and CCTV on entrances to the building.

Vulnerable locks are installed throughout the building on the Unity room and in the storage room for voting machines. Lock pick vulnerable locks allow access to secured areas by manipulating the tumbler and pins utilizing a pick set. This can be done in a matter of a minutes by a skilled intruder. Bump keys or “skeleton” keys can open a lock almost instantly by utilizing a vulnerability in the pin mechanism by thumping a specially modified key while turning. It is the SCMDDDcoe’s recommendation to install re-keyable bump/pick resistant locks which are slightly more expensive but can be changed easily should an employee leave employment or no longer require access.

Drop ceilings provide a means to bypass security access mechanisms like CCTV and doors. It is the SCMDDDcoe’s recommendation to ensure walls extend into the ceiling or that there is no access to drop ceiling areas that are not unmonitored by CCTV.
Fire protection systems safeguard information and personnel to provide continuity of operations in the case of a fire. It is the SCMDDCOE’s recommendation to have a fireproof safe for backup asset management inventories and secure item storage as well as a fire suppression system.

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", “Escort Name” (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE's recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCNGDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure.

The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCNGDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE’s recommendation that an in-depth follow-on assessment be conducted on the county-owned workstations that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.
In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County’s cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County’s portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: **Unity Image Configuration Recommendations**

(Passwords, Account Lockout, Security Auditing, and Other Good Practices)

(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- **Enforce password history = 12 passwords remembered**
 - This will not allow the last 12 passwords to be reused
- **Maximum password age = 120 days**
 - This will set mandatory password changes every 120 days
- **Minimum password age = 3 days**
 - This will not allow a password to be changed until 3 days after the last password change
- **Minimum password length = 14 characters**
 - This will force any password to be at least 14 characters long
- **Password must meet complexity requirements = Enabled**
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: ~!@#$%^&*_-+=`|(){}[]:;"'<>,.?/
- **Store password using reversible encryption = Disabled**
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain **at least** 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain **at least** one number (for example, 0-9).
- Contain **at least** one special character (for example, !$%^&*()-_=+|{}[]:;"'<>,.?/).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
- Contain work-related information such as building names, system commands, sites, companies, hardware, or software.
- Contain number patterns such as aaabbb, qwerty, zyxwvuts, or 123321.
- Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
- Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(NOTE: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*!*ThisMorning!).

(NOTE: Do not use this specific example as passwords!)

Password Protection

- Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
- User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
- All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
- All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
- Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
- Passwords must not be inserted into email messages or other forms of electronic communication.
- Passwords must not be revealed over the phone to anyone.
- Passwords will not be revealed on questionnaires or security forms.
- Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
- Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, co-workers while on vacation, and family members.
- Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
- If your password is suspected as being compromised, you must report the incident and change all passwords.
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user's attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
- When maximum event log size is reached = Do not overwrite events (Clear logs manually)
Other Good Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.
Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.
Assessment of Chesterfield County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Chesterfield County Registration and Elections Department
Prepared By: South Carolina National Guard Defensive Cyber Operations Element

October 31, 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>6</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>8</td>
</tr>
</tbody>
</table>
Executive Summary

On October 18, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Chesterfield County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Warrant Officer 1 James Billingsley. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Chesterfield County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information; 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 2 "high" vulnerabilities that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered

- It was later discovered that

While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your county should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your county again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment
Nothing Significant to Report

2. Unity Workstation Configuration Assessment

2.1

Threat Level: High

Description:

Impact:

Recommendation:

3. Data-Transfer Methodologies Assessment

3.1

Threat Level: High

Description:

Impact:
Recommendation:

-
-
-
-
Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMEDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", “Escort Name” (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMEDCOE’s recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMEDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMEDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure.

The SCMEDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMEDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMEDCOE. It is the SCMEDCOE's recommendation that an in-depth follow-on assessment be conducted on the county-owned workstation(s) that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important
to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County's cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County's portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations

(Passwords, Account Lockout, Security Auditing, and Other Good Practices)
(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- Enforce password history = 12 passwords remembered
 - This will not allow the last 12 passwords to be reused
- Maximum password age = 120 days
 - This will set mandatory password changes every 120 days
- Minimum password age = 3 days
 - This will not allow a password to be changed until 3 days after the last password change
- Minimum password length = 14 characters
 - This will force any password to be at least 14 characters long
- Password must meet complexity requirements = Enabled
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: ~!@#$%^&*_-+=`|(){}[]":;'<>?,./
- Store password using reversible encryption = Disabled
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain at least 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain at least one number (for example, 0-9).
- Contain at least one special character (for example, !$%^&*()-_+~=`\{}|:;'<>,./).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
UNCLASSIFIED//FOUO

- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
- Contain work-related information such as building names, system commands, sites, companies, hardware, or software.
- Contain number patterns such as aaabbb, qwerty, zyxwvuts, or 123321.
- Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
- Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(NOTE: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*&!$ThisMorning!).

(NOTE: Do not use this specific example as passwords!)

Password Protection

- Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
- User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
- All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
- All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
- Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
- Passwords must not be inserted into email messages or other forms of electronic communication.
- Passwords must not be revealed over the phone to anyone.
- Passwords will not be revealed on questionnaires or security forms.
- Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
- Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, co-workers while on vacation, and family members.
- Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
- If your password is suspected as being compromised, you must report the incident and change all passwords.

UNCLASSIFIED//FOUO
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
Other Recommended Best Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.
Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.
Assessment of Clarendon County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Clarendon County Registration and Elections Department
Prepared By: South Carolina National Guard Defensive Cyber Operations Element

October 31, 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>5</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>6</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>8</td>
</tr>
</tbody>
</table>
Executive Summary

On October 24, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Clarendon County as requested by the South Carolina State Election Commission. This rapid assessment was conducted Benton by MSG Ricky Chapman (lead) and SSG Marquis. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Clarendon County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information: 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 3 “critical” vulnerabilities and 1 “high” vulnerability that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered

It was later discovered that

While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your county should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your county again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment

1.1

Threat Level: Critical

Description:

Impact:

Recommendation:

2. Unity Workstation Configuration Assessment

2.1

Threat Level: Critical

Description:

Impact:

Recommendation:

•

•

•
3. Data-Transfer Methodologies Assessment

3.1 Threat Level: Critical

Description: [Redacted]

Impact: [Redacted]

Recommendation: [Redacted]

3.2 Threat Level: High

Description: [Redacted]

Impact: [Redacted]

Recommendation: [Redacted]

• [Redacted]
• [Redacted]
• [Redacted]
Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", “Escort Name” (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE's recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure. The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMDDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE's recommendation that an in-depth follow-on assessment be conducted on the county-owned workstations that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important to express how crucial it is that the County Election Commissioners have IT support from
County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County's cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County's portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations

(Passwords, Account Lockout, Security Auditing, and Other Good Practices)

(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- **Enforce password history = 12 passwords remembered**
 - This will not allow the last 12 passwords to be reused
- **Maximum password age = 120 days**
 - This will set mandatory password changes every 120 days
- **Minimum password age = 3 days**
 - This will not allow a password to be changed until 3 days after the last password change
- **Minimum password length = 14 characters**
 - This will force any password to be at least 14 characters long
- **Password must meet complexity requirements = Enabled**
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: ~!@#$%^&*_-+=`|(){}[]:;"'<>,.?/
- **Store password using reversible encryption = Disabled**
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain **at least** 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain **at least** one number (for example, 0-9).
- Contain **at least** one special character (for example, !$%^&*()+_=-\`{}[]:;"'<>,./).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
• Contain work-related information such as building names, system commands, sites, companies, hardware, or software.
• Contain number patterns such as aaabbb, qwerty, zyxwvuts, or 123321.
• Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
• Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(NOTE: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*&!$ThisMorning!).

(NOTE: Do not use this specific example as passwords!)

Password Protection

• Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
• User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
• All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
• All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
• Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
• Passwords must not be inserted into email messages or other forms of electronic communication.
• Passwords must not be revealed over the phone to anyone.
• Passwords will not be revealed on questionnaires or security forms.
• Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
• Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, co-workers while on vacation, and family members.
• Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
• If your password is suspected as being compromised, you must report the incident and change all passwords.

Account Lockout
Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
- When maximum event log size is reached = Do not overwrite events (Clear logs manually)

Other Good Practices
Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.

Use of Screensaver Password
It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.

This report’s and material represents the South Carolina Military Department’s best efforts to respond to a request for assistance by the South Carolina State Elections Commission. The South Carolina Military Departments makes no representations or warranties of any kind, express or implied as to the completeness, accuracy, or reliability of any system or systems examined. The findings and recommendations included in this report should be reviewed and only implemented after careful consideration by the South Carolina State Election Commission. Any reliance on the information provided is strictly at your own risk.
Assessment of Colleton County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Colleton County Elections & Voter Registration Department
Prepared By: South Carolina National Guard Defensive Cyber Operations Element
October 31, 2016
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>5</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>6</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>8</td>
</tr>
</tbody>
</table>
Executive Summary

On October 19, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Colleton County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Second Lieutenant Leo Pate III. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Colleton County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information; 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 3 "high" vulnerabilities, and 1 “medium” vulnerability that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered "It was later discovered that..."

While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your County should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your County again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment

1.1 Threat Level: High

Description:

Impact:

Recommendation:

1.2 Threat Level: Medium

Description:

Impact:

Recommendation:

2. Unity Workstation Configuration Assessment

2.1 Threat Level: High

Description:
Impact:

Recommendation:

3. Data-Transfer Methodologies Assessment

3.1 Threat Level: High

Description:

Impact:

Recommendation:

•

•

•

•
Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", “Escort Name” (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE’s recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure.

The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMDDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE’s recommendation that an in-depth follow-on assessment be conducted on the county-owned workstations that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important...
to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County’s cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County’s portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations

(Passwords, Account Lockout, Security Auditing, and Other Good Practices)

(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- Enforce password history = 12 passwords remembered
 - This will not allow the last 12 passwords to be reused
- Maximum password age = 120 days
 - This will set mandatory password changes every 120 days
- Minimum password age = 3 days
 - This will not allow a password to be changed until 3 days after the last password change
- Minimum password length = 14 characters
 - This will force any password to be at least 14 characters long
- Password must meet complexity requirements = Enabled
 - This will force three of the following four categories when creating new passwords
 ✷ Uppercase characters (A through Z)
 ✷ Lowercase characters (a through z)
 ✷ Numbers (0 through 9)
 ✷ Special characters: ~!@#$%^&*_-+=`|(){}[]:;"'<>,.?/
- Store password using reversible encryption = Disabled
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain at least 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain at least one number (for example, 0-9).
- Contain at least one special character (for example, !$%&*()_+-|~=`\{}[]'^<>,.?/).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
• Contain work-related information such as building names, system commands, sites, companies, hardware, or software.
• Contain number patterns such as aaabbb, qwerty, zyxwvuts, or 123321.
• Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
• Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(NOTE: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*&!$ThisMorning!).

(NOTE: Do not use this specific example as passwords!)

Password Protection

• Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
• User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
• All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
• All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
• Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
• Passwords must not be inserted into email messages or other forms of electronic communication.
• Passwords must not be revealed over the phone to anyone.
• Passwords will not be revealed on questionnaires or security forms.
• Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
• Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, co-workers while on vacation, and family members.
• Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
• If your password is suspected as being compromised, you must report the incident and change all passwords.
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
- When maximum event log size is reached = Do not overwrite events (Clear logs manually)

Other Good Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.
Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.
Assessment of Darlington County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Darlington County Registration and Elections Department
Prepared By: South Carolina National Guard Defensive Cyber Operations Element
October 31, 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>6</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>8</td>
</tr>
</tbody>
</table>
Executive Summary

On October 18, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Darlington County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Warrant Officer 1 James Billingsley. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Darlington County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information; 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 3 “high” vulnerabilities that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered [redacted]. It was later discovered that [redacted].

While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your county should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your county again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment

1.1 Threat Level: High

Description:

Impact:

Recommendation:

2. Unity Workstation Configuration Assessment

2.1 Threat Level: High

Description:

Impact:

Recommendation:

3. Data-Transfer Methodologies Assessment

3.1 Threat Level: High
Description:

Impact:

Recommendation:

•

•

•

•
Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", “Escort Name” (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE’s recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure. The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMDDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE's recommendation that an in-depth follow-on assessment be conducted on the county-owned workstations that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important
to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County's cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County's portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations

(Passwords, Account Lockout, Security Auditing, and Other Good Practices)

(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- Enforce password history = 12 passwords remembered
 - This will not allow the last 12 passwords to be reused
- Maximum password age = 120 days
 - This will set mandatory password changes every 120 days
- Minimum password age = 3 days
 - This will not allow a password to be changed until 3 days after the last password change
- Minimum password length = 14 characters
 - This will force any password to be at least 14 characters long
- Password must meet complexity requirements = Enabled
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: ~!#$%^&*_-+=`|(){}[]:;'",.<>/?
- Store password using reversible encryption = Disabled
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain at least 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain at least one number (for example, 0-9).
- Contain at least one special character (for example, !$%^&*()+-=|~{[]}/:;'<,>.?/
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
• Contain work-related information such as building names, system commands, sites, companies, hardware, or software.
• Contain number patterns such as aaabbb, qwerty, zyxwvuts, or 123321.
• Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
• Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(NOTE: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*&!$ThisMorning!).

(NOTE: Do not use this specific example as passwords!)

Password Protection

• Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
• User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
• All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
• All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
• Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
• Passwords must not be inserted into email messages or other forms of electronic communication.
• Passwords must not be revealed over the phone to anyone.
• Passwords will not be revealed on questionnaires or security forms.
• Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
• Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, co-workers while on vacation, and family members.
• Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
• If your password is suspected as being compromised, you must report the incident and change all passwords.
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 o This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 o This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 o This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 o This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 o This records users who attempt to open or view files
- Audit logon events = Success and Failure
 o This records the result of event logon attempt
- Audit system events = Success and Failure
 o This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
- When maximum event log size is reached = Do not overwrite events (Clear logs manually)
Other Good Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.
Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.
Assessment of Dillon County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Dillon County Voter Registration Department
Prepared By: South Carolina National Guard Defensive Cyber Operations Element

October 31, 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>6</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>8</td>
</tr>
</tbody>
</table>
Executive Summary

On October 18, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a vulnerability assessment on the election processes, procedures, and devices within Dillon county as requested by the South Carolina State Election Commission. This assessment was conducted by Warrant Officer 1 James Billingsley. During this assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Dillon county. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information; 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s assessment resulted in 3 "high" vulnerabilities that require immediate action. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered

It was later discovered that

While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your county should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your County again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment

Nothing Significant to Report

2. Unity Workstation Configuration Assessment

2.1 Threat Level: High

Description:

Impact:

Recommendation:

2.2 Threat Level: High

Description:

Impact:

Recommendation:
3. Data-Transfer Methodologies Assessment

3.1 Threat Level: High

Description:

Impact:

Recommendation:

- •
- •
- •
- •
Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", “Escort Name” (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE’s recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure...
to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County's cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County's portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations

(Passwords, Account Lockout, Security Auditing, and Other Good Practices)

(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- Enforce password history = 12 passwords remembered
 - This will not allow the last 12 passwords to be reused
- Maximum password age = 120 days
 - This will set mandatory password changes every 120 days
- Minimum password age = 3 days
 - This will not allow a password to be changed until 3 days after the last password change
- Minimum password length = 14 characters
 - This will force any password to be at least 14 characters long
- Password must meet complexity requirements = Enabled
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: '!@#$%^&*_-+=`|(){}[]:;"'<,./?
- Store password using reversible encryption = Disabled
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain at least 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain at least one number (for example, 0-9).
- Contain at least one special character (for example, !$%^&*()-_=+|{}\[]:"'<,./).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
- Contain work-related information such as building names, system commands, sites, companies, hardware, or software.
- Contain number patterns such as aaabbb, qwerty, zyxwvuts, or 123321.
- Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
- Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(NOTE: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*!&!$ThisMorning!).

(NOTE: Do not use this specific example as passwords!)

Password Protection

- Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
- User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
- All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
- All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
- Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
- Passwords must not be inserted into email messages or other forms of electronic communication.
- Passwords must not be revealed over the phone to anyone.
- Passwords will not be revealed on questionnaires or security forms.
- Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
- Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, co-workers while on vacation, and family members.
- Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
- If your password is suspected as being compromised, you must report the incident and change all passwords.
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
- When maximum event log size is reached = Do not overwrite events (Clear logs manually)
Other Good Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.
Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.

This report and material represents the South Carolina Military Department’s best efforts to respond to a request for assistance by the South Carolina State Elections Commission. The South Carolina Military Departments makes no representations or warranties of any kind, express or implied as to the completeness, accuracy, or reliability of any system or systems examined. The findings and recommendations included in this report should be reviewed and only implemented after careful consideration by the South Carolina State Election Commission. Any reliance on the information provided is strictly at your own risk.
Assessment of Dorchester County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Dorchester County Elections & Voter Registration Department
Prepared By: South Carolina National Guard Defensive Cyber Operations Element

October 31, 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>5</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>6</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>8</td>
</tr>
</tbody>
</table>
Executive Summary

On October 18, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Dorchester County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Second Lieutenant Leo Pate III. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Dorchester County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information: 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 3 "high" vulnerabilities that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered [redacted]. It was later discovered that [redacted]. While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your County should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your County again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment

Nothing significant to report.

2. Unity Workstation Configuration Assessment

2.1 Threat Level: High

Description:

Impact:

Recommendation:

2.2 Threat Level: High

Description:

Impact:

Recommendation:

•

•

•
3. Data-Transfer Methodologies Assessment

3.1 Threat Level: High

Description:

Impact:

Recommendation:

•

•

•

•
Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", "Escort Name" (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE’s recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure. The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMDDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE's recommendation that an in-depth follow-on assessment be conducted on the county-owned workstations that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important...
to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County’s cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County's portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- Enforce password history = 12 passwords remembered
 - This will not allow the last 12 passwords to be reused
- Maximum password age = 120 days
 - This will set mandatory password changes every 120 days
- Minimum password age = 3 days
 - This will not allow a password to be changed until 3 days after the last password change
- Minimum password length = 14 characters
 - This will force any password to be at least 14 characters long
- Password must meet complexity requirements = Enabled
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: ~!@#$%^&*_-+=`|(){}[]:;"'<>,.?/
- Store password using reversible encryption = Disabled
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain at least 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain at least one number (for example, 0-9).
- Contain at least one special character (for example, !$%^&*()_+|~-=\{}[]:";'<>?,./).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
• Contain work-related information such as building names, system commands, sites, companies, hardware, or software.
• Contain number patterns such as aabbba, qwerty, zyxwvuts, or 123321.
• Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
• Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(NOTE: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*)&!$ThisMorning!).

(NOTE: Do not use this specific example as passwords!)

Password Protection

• Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
• User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
• All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
• All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
• Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
• Passwords must not be inserted into email messages or other forms of electronic communication.
• Passwords must not be revealed over the phone to anyone.
• Passwords will not be revealed on questionnaires or security forms.
• Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
• Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, coworkers while on vacation, and family members.
• Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
• If your password is suspected as being compromised, you must report the incident and change all passwords.
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
- When maximum event log size is reached = Do not overwrite events (Clear logs manually)
Other Good Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.
Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.

This reports and material represents the South Carolina Military Department’s best efforts to respond to a request for assistance by the South Carolina State Elections Commission. The South Carolina Military Departments makes no representations or warranties of any kind, express or implied as to the completeness, accuracy, or reliability of any system or systems examined. The findings and recommendations included in this report should be reviewed and only implemented after careful consideration by the South Carolina State Election Commission. Any reliance on the information provided is strictly at your own risk.
Assessment of Edgefield County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Edgefield County Voter Registration Department
Prepared By: South Carolina National Guard Defensive Cyber Operations Element

October 31, 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>5</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>6</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>8</td>
</tr>
</tbody>
</table>
Executive Summary

On October 18, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Edgefield County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Warrant Officer 1 James Billingsley. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Edgefield County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information; 1) the description of the vulnerability, 2) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 3 “high” vulnerabilities that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered

It was later discovered that

While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your county should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your county again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment

Nothing Significant to Report

2. Unity Workstation Configuration Assessment

2.1

Threat Level: High

Description:

Impact:

Recommendation:

2.2

Threat Level: High

Description:

Impact:

Recommendation:
3. Data-Transfer Methodologies Assessment

3.1 [Redacted]

Threat Level: High

Description: [Redacted]

Impact: [Redacted]

Recommendation:

- [Redacted]
- [Redacted]
Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", “Escort Name” (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE’s recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure. The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMDDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE's recommendation that an in-depth follow-on assessment be conducted on the county-owned workstations that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important
to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County's cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County's portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations

(Passwords, Account Lockout, Security Auditing, and Other Good Practices)

(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- Enforce password history = 12 passwords remembered
 - This will not allow the last 12 passwords to be reused
- Maximum password age = 120 days
 - This will set mandatory password changes every 120 days
- Minimum password age = 3 days
 - This will not allow a password to be changed until 3 days after the last password change
- Minimum password length = 14 characters
 - This will force any password to be at least 14 characters long
- Password must meet complexity requirements = Enabled
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: ~!@$%^&*-_+-=\{|}\}[":;'<>,.?/
- Store password using reversible encryption = Disabled
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain at least 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain at least one number (for example, 0-9).
- Contain at least one special character (for example, !$%&*()_+|\{}\}[":;'<>,.?/).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
• Contain work-related information such as building names, system commands, sites, companies, hardware, or software.
• Contain number patterns such as aaabbb, qwerty, zyxwvuts, or 123321.
• Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
• Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(NOTE: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*!&!$ThisMorning!).

(NOTE: Do not use this specific example as passwords!)

Password Protection

• Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
• User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
• All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
• All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
• Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
• Passwords must not be inserted into email messages or other forms of electronic communication.
• Passwords must not be revealed over the phone to anyone.
• Passwords will not be revealed on questionnaires or security forms.
• Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
• Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, coworkers while on vacation, and family members.
• Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
• If your password is suspected as being compromised, you must report the incident and change all passwords.
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
- When maximum event log size is reached = Do not overwrite events (Clear logs manually)
Other Good Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.
Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.
Assessment of Fairfield County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Fairfield County Voter Registration and Elections Department
Prepared By: South Carolina National Guard Defensive Cyber Operations Element

October 31, 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>6</td>
</tr>
<tr>
<td>Annex A: SCMDDCOF Unity Image Configuration Recommendations</td>
<td>8</td>
</tr>
</tbody>
</table>
Executive Summary

On October 18, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Fairfield County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Warrant Officer 1 James Billingsley. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Fairfield County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information; 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 2 "high” vulnerabilities that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered

It was later discovered that

While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your county should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your county again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment

Nothing Significant to Report

2. Unity Workstation Configuration Assessment

2.1 Threat Level: High

Description:

Impact:

Recommendation:

3. Data-Transfer Methodologies Assessment

3.1 Threat Level: High

Description:

Impact:

Recommendation:
Recommendation:

-
-
-
-
Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access" , "Name" , "Reason for Visit" , “Escort Name” (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE’s recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure. The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMDDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE's recommendation that an in-depth follow-on assessment be conducted on the county-owned workstations that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important...
to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County's cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County's portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations
(Passwords, Account Lockout, Security Auditing, and Other Good Practices)
(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- Enforce password history = 12 passwords remembered
 - This will not allow the last 12 passwords to be reused
- Maximum password age = 120 days
 - This will set mandatory password changes every 120 days
- Minimum password age = 3 days
 - This will not allow a password to be changed until 3 days after the last password change
- Minimum password length = 14 characters
 - This will force any password to be at least 14 characters long
- Password must meet complexity requirements = Enabled
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: ~!@#$%^&*_-+=`\{|}[]:;'",.<>?/
- Store password using reversible encryption = Disabled
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain at least 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain at least one number (for example, 0-9).
- Contain at least one special character (for example, !$%^&*()_+|~-=\`{}[]:'"<>?,./).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
• Contain work-related information such as building names, system commands, sites, companies, hardware, or software.
• Contain number patterns such as aaabbb, qwerty, zyxwvuts, or 123321.
• Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
• Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(NOTE: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*!$ThisMorning!).

(NOTE: Do not use this specific example as passwords!)

Password Protection

• Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
• User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
• All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
• All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
• Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
• Passwords must not be inserted into email messages or other forms of electronic communication.
• Passwords must not be revealed over the phone to anyone.
• Passwords will not be revealed on questionnaires or security forms.
• Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
• Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, coworkers while on vacation, and family members.
• Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
• If your password is suspected as being compromised, you must report the incident and change all passwords.
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
- When maximum event log size is reached = Do not overwrite events (Clear logs manually)
Other Good Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.
Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.

This reports and material represents the South Carolina Military Department’s best efforts to respond to a request for assistance by the South Carolina State Elections Commission. The South Carolina Military Departments makes no representations or warranties of any kind, express or implied as to the completeness, accuracy, or reliability of any system or systems examined. The findings and recommendations included in this report should be reviewed and only implemented after careful consideration by the South Carolina State Election Commission. Any reliance on the information provided is strictly at your own risk.
Assessment of Florence County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Florence County Registration and Elections Department
Prepared By: South Carolina National Guard Defensive Cyber Operations Element

October 31, 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>5</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>7</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>9</td>
</tr>
</tbody>
</table>
Executive Summary

On October 26, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Florence County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Chief Warrant Officer 2 Stephen Szabo (Lead) and Sergeant Winston Lopez. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Florence County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information; 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 1 "critical" vulnerability and 3 “high” vulnerabilities that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered ...

It was later discovered that ...

While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your county should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your county again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment

Nothing Significant to Report

2. Unity Workstation Configuration Assessment

2.1 Threat Level: Critical

Description: [Redacted]

Impact: [Redacted]

Recommendation: [Redacted]

2.2 Threat Level: High

Description: [Redacted]

Impact: [Redacted]

Recommendation: [Redacted]
2.3 Threat Level: High

Description:

Impact:

Recommendation:

3. Data-Transfer Methodologies Assessment

3.1 Threat Level: High

Description:

Impact:

Recommendation:

•
•
•
•
Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", “Escort Name” (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE’s recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure. The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMDDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE's recommendation that an in-depth follow-on assessment be conducted on the county-owned workstations that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important
to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County’s cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County’s portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations
(Passwords, Account Lockout, Security Auditing, and Other Good Practices)
(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy
Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- Enforce password history = 12 passwords remembered
 o This will not allow the last 12 passwords to be reused
- Maximum password age = 120 days
 o This will set mandatory password changes every 120 days
- Minimum password age = 3 days
 o This will not allow a password to be changed until 3 days after the last password change
- Minimum password length = 14 characters
 o This will force any password to be at least 14 characters long
- Password must meet complexity requirements = Enabled
 o This will force three of the following four categories when creating new passwords
 ▪ Uppercase characters (A through Z)
 ▪ Lowercase characters (a through z)
 ▪ Numbers (0 through 9)
 ▪ Special characters: !@$%^&*_-+=`|(){}[]:;"'<>,.?/
- Store password using reversible encryption = Disabled
 o This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain at least 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain at least one number (for example, 0-9).
- Contain at least one special character (for example, !@$%^&*_-+=`|(){}[]:;"'<>,.?/).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.
 o https://lastpass.com/generatepassword.php - LastPass Password Generator

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
• Contain work-related information such as building names, system commands, sites, companies, hardware, or software.
• Contain number patterns such as aaabbb, qwerty, zyxwvuts, or 123321.
• Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
• Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(NOTE: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*&!$ThisMorning!).

(NOTE: Do not use this specific example as passwords!)

Password Protection

• Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
• User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
• All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
• All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
• Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
• Passwords must not be inserted into email messages or other forms of electronic communication.
• Passwords must not be revealed over the phone to anyone.
• Passwords will not be revealed on questionnaires or security forms.
• Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
• Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, coworkers while on vacation, and family members.
• Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
• If your password is suspected as being compromised, you must report the incident and change all passwords.
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
- When maximum event log size is reached = Do not overwrite events (Clear logs manually)
Other Good Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.
Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.

This report and material represents the South Carolina Military Department’s best efforts to respond to a request for assistance by the South Carolina State Elections Commission. The South Carolina Military Departments makes no representations or warranties of any kind, express or implied as to the completeness, accuracy, or reliability of any system or systems examined. The findings and recommendations included in this report should be reviewed and only implemented after careful consideration by the South Carolina State Election Commission. Any reliance on the information provided is strictly at your own risk.
Assessment of Georgetown County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Georgetown County Elections & Voter Registration Department
Prepared By: South Carolina National Guard Defensive Cyber Operations Element

October 31, 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>6</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>8</td>
</tr>
</tbody>
</table>
Executive Summary

On October 17, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Georgetown County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Second Lieutenant Leo Pate III. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Georgetown County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information; 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 2 "high" vulnerabilities that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered [redacted]. It was later discovered that [redacted].

While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your County should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your County again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment

Nothing significant to report.

2. Unity Workstation Configuration Assessment

2.1 Threat Level: High

Description:

Impact:

Recommendation:

3. Data-Transfer Methodologies Assessment

3.1 Threat Level: High

Description:

Impact:

Recommendation:
Recommendation:

-
-
-
-
Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g., locks, walls, cameras, etc.) and accountability controls (e.g., limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", “Escort Name” (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE’s recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure. The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMDDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE’s recommendation that an in-depth follow-on assessment be conducted on the county-owned workstations that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important
to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County’s cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County's portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations

(Passwords, Account Lockout, Security Auditing, and Other Good Practices)
(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- **Enforce password history** = 12 passwords remembered
 - This will not allow the last 12 passwords to be reused
- **Maximum password age** = 120 days
 - This will set mandatory password changes every 120 days
- **Minimum password age** = 3 days
 - This will not allow a password to be changed until 3 days after the last password change
- **Minimum password length** = 14 characters
 - This will force any password to be at least 14 characters long
- **Password must meet complexity requirements** = Enabled
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: ~!@#$%^&*_-+=`|(){}[]:;"'<>,.?/
- **Store password using reversible encryption** = Disabled
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain at least 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain at least one number (for example, 0-9).
- Contain at least one special character (for example, !$%^&*()_+|~-=\`{}[]:;"'<,>.?/).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(Note: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*$ThisMorning!).

(Note: Do not use this specific example as passwords!)

Password Protection

- Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
- User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
- All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
- All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
- Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
- Passwords must not be inserted into email messages or other forms of electronic communication.
- Passwords must not be revealed over the phone to anyone.
- Passwords will not be revealed on questionnaires or security forms.
- Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
- Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, co-workers while on vacation, and family members.
- Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
- If your password is suspected as being compromised, you must report the incident and change all passwords.
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- **Account Lockout Duration** = 45 Minutes
- **Account Lockout Threshold** = 5 invalid login attempts
- **Reset Account Lockout Counter** = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- **Audit account logon events** = Success and Failure
 - This records every attempt at trying to log onto the computer
- **Audit account management** = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- **Audit policy change** = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- **Audit privilege use** = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- **Audit object access** = Failure only
 - This records users who attempt to open or view files
- **Audit logon events** = Success and Failure
 - This records the result of event logon attempt
- **Audit system events** = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- **Maximum log size** = 80,000 KB
- **When maximum event log size is reached** = Do not overwrite events (Clear logs manually)
Other Good Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.
Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.
Assessment of Greenville County’s Election Information Security Posture

Requested By: Executive Director - South Carolina State Election Commission
Prepared For: Greenville County Elections and Registrations Office
Prepared By: South Carolina National Guard Defensive Cyber Operations Element

October 31, 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Physical Security Assessment</td>
<td>4</td>
</tr>
<tr>
<td>Unity Workstation Configuration Assessment</td>
<td>5</td>
</tr>
<tr>
<td>Data-Transfer Methodologies Assessment</td>
<td>6</td>
</tr>
<tr>
<td>Other Observations and Recommendations</td>
<td>7</td>
</tr>
<tr>
<td>Annex A: SCMDDCOE Unity Image Configuration Recommendations</td>
<td>9</td>
</tr>
</tbody>
</table>
Executive Summary

On October 17, 2016, the South Carolina Military Department Defensive Cyber Operations Element (SCMDDCOE) conducted a rapid vulnerability assessment on the election processes, procedures, and devices within Greenville County as requested by the South Carolina State Election Commission. This rapid assessment was conducted by Master Sergeant Ricky Chapman (lead) and Staff Sergeant Marquis Benton. During this rapid assessment, the SCMDDCOE focused on three areas. These areas were 1) the physical security of the election materials for the County, 2) the Unity workstation configuration, and 3) the data-transfer methodologies specific to Greenville County. All vulnerabilities discovered within these three areas, as identified by the SCMDDCOE, will be annotated in this report as either “critical”, “high”, or “medium” and will provide the following information; 1) the description of the vulnerability, 2) the impact this vulnerability could have if exploited, and 3) the SCMDDCOE’s recommendation in mitigating that vulnerability.

The SCMDDCOE’s rapid assessment resulted in 1 "critical" vulnerability, 3 “high” vulnerabilities, and 1 "medium" vulnerability that require immediate attention. These vulnerabilities are outlined in the ‘Key Findings’ section under its respective area.

When conducting this rapid assessment, the SCMDDCOE discovered

While there is a significant number of security controls that could be implemented to better secure the Unity workstation, due to short amount of time between the receipt of this report and the upcoming national election, the SCMDDCOE decided to create an annex to the final report that lists specific actions that can be implemented with a low risk to the disruption of operations.

It is important to note that the SCMDDCOE recommendations included in this report should be implemented after careful consideration from all stakeholders. Any changes implemented due to these recommendations should be made in accordance with the South Carolina State Election Commission’s change management and configuration control policies and procedures. Changes made without due care and consideration could render a system inoperable. Functional testing should always be included in your change management plan. Given the short amount of time between receipt of this report and the upcoming national election, it may not be prudent to implement these changes before the event. Your county should make a risk-based determination based on its abilities, resources, and circumstances.

The SCMDDCOE welcomes any feedback or other questions and concerns regarding this report or its findings and we look forward to working with your county again. Should you have any questions, comments, or concerns, please feel free to reach out the SCMDDCOE.
Key Findings

1. Physical Security Assessment

1.1 [Redacted]
Threat Level: High

Description: [Redacted]

Impact: [Redacted]

Recommendation: [Redacted]

1.2 Key Control of Sensitive Storage Areas

Threat Level: High

Description: [Redacted]

Impact: [Redacted]

Recommendation: [Redacted]
2. Unity Workstation Configuration Assessment

2.1 Threat Level: Critical

Description: [Redacted]

Impact:

- [Redacted]

2.2 Threat Level: Medium

Description: [Redacted]

Impact:

Recommendation: [Redacted]
3. Data-Transfer Methodologies Assessment

3.1 Threat Level: High

Description:

Recommendation:

-
-
-
-
Other Observations and Recommendations

One of the greatest and widespread vulnerabilities presenting risk to an organization’s overall cybersecurity posture is unauthorized personnel obtaining physical access to secure areas that contain sensitive IT equipment. Best practices for mitigating these risks are 1) establishing a physically secure area for the storage of sensitive IT equipment and 2) limiting access to this area to authorized personnel only. The Counties can establish a physically secure area by utilizing physical access controls (e.g. locks, walls, cameras, etc.) and accountability controls (e.g. limiting the number of personnel who possess a key). It is the SCMDDCOE’s recommendation that a visitor log and physical access control log, used to track persons entering the physically secure areas where sensitive IT equipment is located, be established. An access control log, used in conjunction with a CCTV camera or door chime system, can be used to help implement controlled access and aid follow-up investigations if necessary. The Access Control Log should consist of a "Date", "Time of Access", "Name", "Reason for Visit", “Escort Name” (if needed) and "Time of Exit" field. Some circumstances require sensitive IT equipment to be stored and used in less secure areas or during events where large volumes of foot traffic is expected. A common mitigation strategy implemented in cases like these is for authorized personnel to wear distinctive apparel or badging to distinguish themselves from those around them, and make it clearly visible when unauthorized persons may attempt to approach and access sensitive IT equipment. This helps authorized personnel easily identify and preempt attempted access by unauthorized parties. It is also the SCMDDCOE’s recommendation, that every County consider which physical access controls/mitigation measures best meet their circumstances and implement appropriate measures to limit and track personnel accessing sensitive IT systems and secure areas where election materials and IT equipment are stored and/or used.

Due to time constraints, the SCMDDCOE’s rapid assessments with the Counties were primarily focused on several key components of the election infrastructure and process. Unfortunately, there was not enough time to establish expressed, written agreements and permission to access and examine county-owned workstations used in the election process. This impacted the SCMDDCOE’s ability to observe and assess risks presented by the county-owned workstation(s) used as election infrastructure.

The SCMDDCOE identified the workstation(s) that had been designated for these roles and confirmed whether they are county-owned workstations and subject to County IT management, but did not have an opportunity to assess the risks presented by their configuration & confirm whether appropriate security controls were in place. This presents an open risk, because without assessing these workstations—the SCMDDCOE was not able to verify that possible start and end-points of relevant election data have the proper controls in place to safeguard this information. While the County may have placed proper controls on the workstation(s), it has not been verified or the risk accurately assessed at this point by the SCMDDCOE. It is the SCMDDCOE’s recommendation that an in-depth follow-on assessment be conducted on the county-owned workstations that are performing this function, after expressed, written permission from the Counties can be obtained. It is also imperative that appropriate IT support personnel be present for the in-depth assessment to answer any technical questions, observe first-hand any risks that may be identified and to ensure they understand recommended mitigation or remediation measures.

In many Counties, designated IT personnel were not present (or the County did not have any IT support available) during the rapid assessment. While this may not apply to this County, it is important...
UNCLASSIFIED//FOUO

to express how crucial it is that the County Election Commissioners have IT support from County IT personnel, a third-party entity (with County approval), or from the State of South Carolina. It is the SCMDDCOE’s recommendation that designated IT personnel be available during any assessment to ensure a better understanding of the risks being assessed, any discrepancies identified and potential issues with their County’s cybersecurity posture. It would also ensure IT personnel’s immediate awareness of any critical findings and the recommended mitigation actions from those conducting the assessment. This will enable a timelier resolution which subsequently, improving the security posture for the County's portion of South Carolina’s election infrastructure.

Within various Counties, no official documented policies or procedures detailing specific rules that must be adhered to, could be presented to the SCMDDCOE. While the County Election Officials participating in the assessment could verbally provide specific rules and procedures in answering our hypothetical questions, they could not provide written documentation. It is the SCMDDCOE’s recommendation that Counties closely re-examine their current policies and procedures and formally document them. Documented policies should state exactly what is expected (e.g. rules pertaining to a specific function) across the domain of the County Election’s Office; documented procedures should establish the standard way for how things are done to implement policy. This will aid in identifying possible problems in the process, resulting in more secure policies and procedures being implemented across South Carolina. Good policies and procedures consist of an “Overview,” “Purpose,” “Scope,” the “Policy” or “Procedure” (depending which one is being drafted), “Consequences of Violations,” “Who is Held Responsible,” “Revision History,” “Effective Date,” and “Points of Contact” sections. The final policy and procedure document should be signed and dated under the signature block by the individual who has the authority to implement and enforce it.
Annex A: Unity Image Configuration Recommendations
(Passwords, Account Lockout, Security Auditing, and Other Good Practices)
(When implementing these changes ensure that you do the same process on each workstation)

Passwords

Password Policy

Password policies are used to enforce specific password criteria. You can set these parameters in Windows computers; below are the recommended parameters:

- Enforce password history = 12 passwords remembered
 - This will not allow the last 12 passwords to be reused
- Maximum password age = 120 days
 - This will set mandatory password changes every 120 days
- Minimum password age = 3 days
 - This will not allow a password to be changed until 3 days after the last password change
- Minimum password length = 14 characters
 - This will force any password to be at least 14 characters long
- Password must meet complexity requirements = Enabled
 - This will force three of the following four categories when creating new passwords
 - Uppercase characters (A through Z)
 - Lowercase characters (a through z)
 - Numbers (0 through 9)
 - Special characters: ~!@#$%^&*_-+=`|(){}[]:;'",.<>/?
- Store password using reversible encryption = Disabled
 - This will not store passwords using a weaker encryption method which makes it easier to crack

Password Construction

Strong passwords have the following characteristics:

- Contain at least 14 alphanumeric characters.
- Contain both upper and lower case letters.
- Contain at least one number (for example, 0-9).
- Contain at least one special character (for example, !$%^&*()_+-=\`|{}[]:;'",.<>/?).
- There are many free password generator tools online that could be utilized to craft your unique passwords but they may be harder to remember. Below is the recommended password generator.

Poor, or weak, passwords have the following characteristics:

- Contain less than 14 characters.
- Can be found in a dictionary, including foreign language, or exist in a language slang, dialect, or jargon.
- Contain personal information such as birthdates, addresses, phone numbers, or names of family members, pets, friends, and fantasy characters.
- Contain work-related information such as building names, system commands, sites, companies, hardware, or software.
- Contain number patterns such as aaabbb, qwerty, zyxwvuts, or 123321.
- Contain common words spelled backward, or preceded or followed by a number (for example, terces, secret1 or 1secret).
- Are some version of “Welcome123” “Password123” “Changeme123”

You should never write down a password. Instead, try to create passwords that you can remember easily. One way to do this is create a password based on a song title, affirmation, or another phrase. For example, the phrase, "This May Be One Way To Remember" could become the password TmB1w2R! or another variation.

(NOTE: Do not use either of these specific examples as passwords!)

Passphrases

A passphrase is like a password in use; however, it is relatively long and constructed of multiple words, which provides greater security against various password cracking attacks. Strong passphrases should follow the general password construction guidelines to include upper and lowercase letters, numbers, and special characters (for example, TheTrafficOnThe101Was*&!$ThisMorning!).

(NOTE: Do not use this specific example as passwords!)

Password Protection

- Users should not use the same password for any account on any device. There should be a unique password for each account the user has even if the same person is using multiple computers.
- User accounts that have administrator-level privileges granted through group memberships or programs must have a unique password from all other accounts held by that user to access administrator-level privileges.
- All administrator-level passwords should be changed on at least a quarterly (every four months) basis.
- All user-level passwords should be changed at least every six months. The recommended change interval is every four months.
- Passwords must not be shared with anyone. All passwords are to be treated as sensitive, confidential information.
- Passwords must not be inserted into email messages or other forms of electronic communication.
- Passwords must not be revealed over the phone to anyone.
- Passwords will not be revealed on questionnaires or security forms.
- Password hints will not be used. (If forced to, the hint should be non-descriptive like “Ask IT”)
- Passwords will not be shared with anyone, including administrative assistants, secretaries, managers, co-workers while on vacation, and family members.
- Passwords will not be written down and stored anywhere in your office. Do not store passwords in a file on a computer system or mobile devices (phone, tablet) without encryption.
- If your password is suspected as being compromised, you must report the incident and change all passwords.
Account Lockout

Account Lock Out Policy

Account lockouts are a security feature used to prevent the user’s attempt to “log in” on a computer system before a specified parameter is met. This helps defend against a malicious user or program attempting to “crack” or guess a user’s password. On Windows computers, you can set an Account Lockout Policy to do just that. The following is the recommended parameters that should be set within this policy.

- Account Lockout Duration = 45 Minutes
- Account Lockout Threshold = 5 invalid login attempts
- Reset Account Lockout Counter = 45 Minutes

Security Auditing

Auditing Policy

Auditing policies are used to enforce specific parameters in regards to recording specific Windows events. These events allow specific records of events that happen on the computer to be recorded which would help later in trying to troubleshoot a problem or see if there are potential compromises. Below are the recommended parameters that should be set in regards to auditing.

- Audit account logon events = Success and Failure
 - This records every attempt at trying to log onto the computer
- Audit account management = Success and Failure
 - This records attempts to create, rename or disable users and groups and account passwords
- Audit policy change = Failure only
 - This records attempts to modify the audit policy and other security settings that were previously set
- Audit privilege use = Failure only
 - This records each time a user invokes a “privileged” operation on the system such as a Backup or Restore operation
- Audit object access = Failure only
 - This records users who attempt to open or view files
- Audit logon events = Success and Failure
 - This records the result of event logon attempt
- Audit system events = Success and Failure
 - This records system shutdown and restart events, log full events and other events that have system-wide significance

Managing Logs

By default, logs are stored and only a specified size amount of these logs cumulatively are kept. This overall size is very low by default. These settings can be found in the Windows Logs and Applications and Services Logs within the built-in Windows Event Viewer program. Below are our recommendations in managing these logs:

- Maximum log size = 80,000 KB
- When maximum event log size is reached = Do not overwrite events (Clear logs manually)
Other Good Practices

Use of Administrator Account vs Standard User Account

By default, the Administrator account is enabled on Windows XP. This is a security concern because it is very well known that there is an Administrator account and that it is enabled by default. If discovered that there is a Windows XP workstation on a network, attackers will first target the Administrator account. Therefore, it’s good practice to disable the built-in Administrator account, create a new custom Administrator account and then create new accounts for the Unity’s everyday use that doesn’t have the same privileges as the new Administrator account. Also, it is generally bad practice to use your administrator account for everyday use of a workstation. An administrator account should only be used for things that require such as installing software or creating/deleting/modifying users. The following is a recommendation in how to implement this.

Disabling Built-In Accounts and/or Deleting Unneeded Accounts

It is good practice to only allow user accounts to be created on a workstation if they are to be used. Like the good practice listed above, there are built-in accounts that are needed to exist on a Windows workstation for it to function as expected but there are also accounts that are built-in that add a capability that is convenient for the user(s). One of these accounts is the “Guest” account. The “Guest” account is an account that allows guest access to a workstation. It was intended to allow guests (those without user accounts on a workstation) to have access to a workstation to perform basic computer functions like browsing the internet, sending a fax or playing a simple computer game. This account is not password protected, enabled by default, and provides some access to the core files needed for Windows to run. It was later determined that attackers could use this account to compromise the Windows workstation. It is a good practice to disable this user account (you cannot delete this account as it is a built-in account) and any other user accounts you do not use. This will make the possible areas of attacks on the workstation much smaller.
Use of Screensaver Password

It is good practice that only the user logged into the workstation be the only person that uses that workstation. One way that malicious users violate this is if an authorized user steps away from the computer without “locking” it (requiring the use of username and password to regain access), a malicious user can walk up to the workstation and begin using it. One way to mitigate this is to set a screensaver password. If this is set, the computer will go to a screensaver after a specific amount of time and upon trying to regain access to the workstation, the user will be prompted to enter the username and password. Below is how to implement this recommendation:

1. Go to Start → Control Panel → Display.
2. Click on the Screen Saver tab, then choose the screen saver of your choice.
3. Choose to wait 4 minutes.
4. Check the box beside “On resume, password protect.” This will require a password to be entered the next time someone uses the computer.
5. Click on “OK”.

It is highly recommended that when you leave the computer for any amount of time, you should lock it before walking away. Just simultaneously press the Windows button (the key that has the Windows logo) + “L” and the system is automatically locked. A password will be required to resume use of the computer.

Disabling Unneeded/Unused Features

Computers today come with a lot of features that extends the computer’s capabilities. Some of these features include Bluetooth, Wi-Fi, Cameras, Microphones, etc. With each addition of a feature, the number of ways a computer could become compromised by a malicious person increases. It is a good practice to disable all features that aren’t needed or used. Some of these include not only disabling Wi-Fi and Bluetooth within the computer’s operating system but also physically removing the wireless and Bluetooth cards from the computer itself. By removing these cards, you’ve not only disabled this feature but you’ve also eliminated the capability of that computer ever connecting to a wireless signal (unless you plug in an external device that brings this capability back). This can normally be done with a Philips head screwdriver but different models of computers will vary.

This reports and material represents the South Carolina Military Department’s best efforts to respond to a request for assistance by the South Carolina State Elections Commission. The South Carolina Military Departments makes no representations or warranties of any kind, express or implied as to the completeness, accuracy, or reliability of any system or systems examined. The findings and recommendations included in this report should be reviewed and only implemented after careful consideration by the South Carolina State Election Commission. Any reliance on the information provided is strictly at your own risk.