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High-rate

Overview High-rate Dynamics in the Real-world ) sackground > pata Fusion

Civil Structures
Exposed to blast

i '-;,l ¢ B
Sea

Samali, B., et al., Review of the basics of state of the art of blast loading. Asian Journal of Civil Engineering. (2018).




e Automotive safety systems against Collision Background ) Data Fusion

airbag
deployment



https://blog.allstate.ca/youve-been-involved-in-a-car-accident-now-what/2015/
https://www.tuningblog.eu/wp-content/uploads/2020/01/Airbag-nachr%C3%BCsten-SRS-Aufprallkissen-e1578294696485.jpg

High+at Space shuttle and Aerial Vehicles Prone sackground ) Data Fusion Results
verview to In-Flight Anomalies

Hypersonic vehicles Ballistic packages Debris approaching space shuttle

Lightning strikes on aircraft



http://www.australiandefence.com.au/defence/joint/australia-looks-to-hypersonic-technology
https://s167.daydaynews.cc/?url=http%3A%2F%2Finews.gtimg.com%2Fnewsapp_bt%2F0%2F11461318938%2F1000
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.express.co.uk%2Fnews%2Fweird%2F1290901%2Fiss-news-anomaly-nasa-space-station-ufo-spacex-elon-musk-atlantis-spt&psig=AOvVaw0vPErcaECPagXzvTxIXGIu&ust=1646527081721000&source=images&cd=vfe&ved=0CA0Q3YkBahcKEwiI_43B3a32AhUAAAAAHQAAAAAQAw
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.taiwannews.com.tw%2Fen%2Fnews%2F4455901&psig=AOvVaw0tUj2kxhCqzLEEQjX8XBPX&ust=1646527180004000&source=images&cd=vfe&ved=0CA0Q3YkBahcKEwiwzLT53a32AhUAAAAAHQAAAAAQAw

High-rate Description of High-rate Dynamics Background ) Data Fusion

Overview

High-rate (<100ms , , :
M The deceleration event in drop tower tests typically

lasts for 0.5ms

NREE |

——-—test 1 accel 1
| | —test 1 accel 4
accel 4 ~=~test 2 accel 1
—1est 2 accel 4
———test 3 accel 1
—test 3 accel 4

accel 1

deceleration (kgn)

0.3
time (ms)

Large uncertainties in the external loads.
High levels of nonstationarity and heavy disturbance.

Generations of unmodeled dynamics from changes in
mechanical configuration.

Hong, J. et al,. Introduction to state estimation of high-rate system dynamics. Sensors, 18(2):217, Jan 2018



http://facweb.cs.depaul.edu/sgrais/ballistic_photography.htm
https://linex.com/security-and-defense/blast-mitigation
https://github.com/ARTS-Laboratory/Paper-Development-of-a-Real-time-solver-for-the-Local-Eigenvalue-Modification-Procedure

cH)igh-r_ate ReprOdUCI_ng ngh-rate Dynamics Background Data Fusion
verview in Laboratory

Cart with Actuator | 500 mm
DROPBEAR experimental testbed: Rollers | |

‘q“. -
. . . . . L. Beam 2 Accelerometer Cart with Cl
« The Dynamic Reproduction of Projectiles in Ballistic ! M*’?’ Rolles v

Environments for Advanced Research (DROPBEAR) g’f i i
was used to generate the experimental data in this ==
work.

Cantilever beam with a controllable roller to alter the
state.

Acceleration and pin location are recorded.

Dataset available on GitHub at:
https://qithub.com/High-Rate-SHM-Working-
Group/Dataset-2-DROPBEAR-Acceleration-vs-Roller-
Displacement
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Joyce, B., Dodson, J., Laflamme, S., & Hong, J. An experimental test bed for developing high-rate structural health monitoring
methods. Shock and Vibration, 2018.



https://github.com/High-Rate-SHM-Working-Group/Dataset-2-DROPBEAR-Acceleration-vs-Roller-Displacement
https://github.com/High-Rate-SHM-Working-Group/Dataset-2-DROPBEAR-Acceleration-vs-Roller-Displacement
https://github.com/High-Rate-SHM-Working-Group/Dataset-2-DROPBEAR-Acceleration-vs-Roller-Displacement

High-rate
Overview

Experimental System used for Validation Background ) Data Fusion

Joyce, B., Dodson, J., Laflamme, S., & Hong, J. An experimental test bed for developing high-rate structural health monitoring
methods. Shock and Vibration, 2018.
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Background Real-time FEA model updating Data Fusion

Experimental

DROPBEAR experimental testbench data aquistion Hanning window
roller connection cantilever beam

|l measured resonant
frequency (0, e}

FEA model sample n unique construct n calculate fundamental| [identify best FEA model
roller locations FEA models frequency (Kv=AMy)
|-||.‘I. Ilr%ilr Kk, 3

M, [ Ilf:-\’lm:u.aurcd — W3 r” 2
o T ) it KoM, @ e )

Analytical

select FEA model
with lowest error

K, M,

L 4

probability density function current system state
(PDF) of roller locations

_ update PDF based on current system state

roller location

Downey A, et al,. “Millisecond Model Updating for Structures Experiencing Unmodeled High-Rate Dynamic Events” Mechanical Systems and Signal
Processing 138, 2020
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AN ©:ckground Real-time FEA model updating Results Data Fusion

estimated roller location measured roller location estimated roller location 36
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Downey A, et al,. “Millisecond Model Updating for Structures Experiencing Unmodeled High-Rate Dynamic Events” Mechanical Systems and Signal
Processing 138, 2020




ANl ©:ckground FEA Computation speed for the DROPBEAR ;DataFusion ; Results

General Eigenvalue solutions
accurately estimates the state
of the DROPBEAR ol

—_—
o
8
—
o
g
=

Solving for system’s frequencies .
g y 9 . FEA model Limited
accounted for 90% of algorithm
. . : | — to 23 nodes
iteration time

80

number of nodes

Carroll, M., Downey, A., Dodson, J., Hong, J. and Scheppegrell, J., “Analysis of Computation Speeds of Eigenvalue Solutions for High-Rate Structural
Health Monitoring.”




High-rate Local Eigenvalue Modification Procedure |
Overview Background Data Fusion Results
(LEMP)

Initial Modes Participation Factors

Developed by Wesseinburger in 1968 X 0.7967

Identifies physical changes to the system such as
mass, stiffness or damping using changes such as
frequencies or mode shapes

x 0.5974

Altered Mode 1

x 0.0881

Model the altered state as a mixture of the initial state
and changes made to the initial state

Reduces the GE equation to a set of second-order
equations = x 0.0087

Avitabile, P., “Twenty Years of Structural Dynamic Modification- A Review,” Sound and Vibration, pp. 14-25. 2003
Drnek, C. R., “Local eigenvalue modification procedure for real-time model updating of structures experiencing high-rate dynamic events,” (2020).




High-rate Local Eigenvalue Modification Procedure |
Overview Background Data Fusion Results
(LEMP)

Coupled single DOF systems representing the altered state
N

n independent single DOF systems representing the initial state

N

kez

Initial Modificaton Altered

State State

Physical
Space

[M,], [K4] — [AM;], [AK ;] — [M.], [K;] Physical

l » i DOF

m 2
U’f’
Modal — = 5 2
Transformation 2 = [U1l{ps3 o Z; w? — 2 () = [U,]{p2}
‘ Solved using Divide ‘
and Conquer method

[00%]; [Uq] m— {p1} = [Us21{p2}

Modal
Space

Avitabile, P., “Twenty Years of Structural Dynamic Modification- A Review,” Sound and Vibration, pp. 14-25. 2003
Drnek, C. R., “Local eigenvalue modification procedure for real-time model updating of structures experiencing high-rate dynamic events,” (2020).



http://www.me.sc.edu/Research/Downey/publications/Theses/Drnek_2020/Drnek_2020_Local_Eigenvalue_Modification.pdf
http://www.me.sc.edu/Research/Downey/publications/Theses/Drnek_2020/Drnek_2020_Local_Eigenvalue_Modification.pdf

Mpliandlilp ©:chground Current methodology Data Fusion

Overview

Stffneness and Mass
matrices

Closest measured truth of system state (~X): position sensor’,( —

reference state

accelorometer

Online processes
- + ‘-

Accelorometer data Derive modal 1 Assume potential
captured contribution vector boundary conditions

+'+_ ]

Solve for the

Frequency analysis .
quency analy new eigenvalues

Ground truth of system state (X): rolling pinned
Condition + Frequency of proposed

model

Observed frequency

Assumed to be Constant Velocity Model:
x = Ax +Q,
y=Cx+Q,

Measurement of system state (Y): (Most explanatory modcl)




High-rate

Overview Background Data Fusion Data FUSIOI’]

Physical system

accelormeter candidate | sample position |
signal model | distribution

measurements l

modal LEMP frequency|| | .
analysis estimate | Statistical methods

Comparison : Kalman
criteria ! filter

Algorithm/computation / tructural /

state estimate

Compare with
measured frequency




High-rate

Overview Background Data Fusion Sam pl”’]g

Four sampling methods are used for select roller locations:

« previous roller location
¢ remaining depends on sampling method

selecting an appropriate roller location

on which LEMP is applied for roller

location estimation.

|
I . .

| Bayesian inference
I

I

Likelihood ratio test

n-1
iterations

Metropolis-Hasting algorithm

Gibbs sampling

n: number of —




High-rate
Overview

Background Data Fusion

Bayesian Inference

Select roller locations:
* Previous roller location
* Remaining depend on Bayes loop

A

State Estimate

Randomly select one point
above the previous mean

I, -/

M.4'7

A 4

Bayes Analysis for point selection:

P(R|E) > 0.5 then above previous mean
P(R|E) < (.5 then below previous mean
P(R|E) = 0.5 then random

Likelihood Function

0]

1 —1 (z — pp)*

P(E|R) =

P(E|L) =

V2mo? )

exrp

2 202

—1(z— pa)?
eap—t (E = HA)”

1
V2ro?2 2 207

O - Standard deviation

[t - mean

P(R)P(E|R)

P(R|E) = 5

(R)P(E|R) + P(L)P(E|L)




High-rate

Overview Background Data Fusion L|ke||hood Ra‘“o Test

Select roller locations:
x,: null hypothesis
X, : alternative hypothesis

} select two points randomly

above the previous mean Maximum likelihood of model 1
PDF ] x| X1 # X

/ \g : L(x|E)

State Estimate

:;\_ H
\ A

w A

Maximum likelihood of model 2
L(x,|E)

3

if A>0.5; accept x, likelihood ratio test Model acceptability
L(x,|E) A

if A <0.5 : reject x,, and accept x, AQx) =
if A= 0.5 ; reject and select another x, Y= L(x,|E)




High-rate
Overview

Background Data Fusion

Metropolis-Hasting Algorithm

Select roller locations:
X: current position
X1 X5+ X, : conditional selection

A

State Estimate
R

*J‘ N H

Up

g

generate new samples from
full-conditional districbution
for x

M,4"

/

Mgtropo]]'s—Hasfing

Randomly select a location from the
stored list of locations

o = min1, P& X 4z,

" p(x) x q(a'|x)
stored list: ~ X; Xy - X,

|
|
algorithm |
|
|
|
|

— — — — npiterations --«— — — —

proposal distribution q(z’|)

(&)  g(als'),

a =min(1,
L@ x al@l)

Candidate state is accepted
with probability ¢




High-rate

Overview Background Data Fusion G | bbS Sam p I | ng

Select roller locations:
x: current position _
Xy, XX, : conditional selection

[ generate new samples from
full-conditional districbution
uBl\ adl for x

State Estimate

p(x) the target distribution

1
p(zlzy, ..., Tn) = — fora<z<b

Gibbs sampling
Randomly select a location from the | POy x)=_ L fora<y<b

stored list of locations b—a
stored list:  Xj X - X,




High-rate : .
Overview Background Data Fusion Kalman Fll'[el‘ ; Results >

Stffneness and Mass
matrices

Solve EVP of
reference state

-y =

Accelorometer data Derive modal
captured contribution vector boundary conditions

v \

The KF appears to be an ideal solution for isolating and N saveicte | e e

L. . . , L . | refinement
refining the estimation of the roller’s true position. , st
* Provides better estimations for initial sampling guess. : L,d Lo
: or Reject
: I

Offers several advantages, such as linearity and

Online processes

Assume potential

simplicity in implementation J,

Adds an extra sequential step that may affect timeliness. (Mw)




High-rate ; .
Overview Background Data Fusion Beam MOde“ng ; Results >

nj

’

Discrete Constant Velocity Model:

Where we assume that between the
Xk = Axk—l + 'Q'p (k — 1) and k timestep, uncontrolled

Yk = ka T -Qm forces cause a constant velocity




(H)i\?;&aeﬁ Background Data Fusion State equa'[iOn mOde“ng ; Results >

X - the expected transition

: Ak - transition matrix
state space representatlon

Y & - the measured noisy variable

Xk Ak Xk’ 1 —|— Wp « Linear relation between

C . - measurement transition matrix
Y = CpXg + W,
Y & - the output from state X
 Modeled as a linear Gaussian process

W, , Wy, - noise is additive,

- independently and identically distributed.




High-rate ; . . j :
O\?erview Background Data Fusion a pnor es“mate Results

A prior estimate

-~

P - estimate of the covariance
A A - T .
Xak = Akxs,k—l AP, ._1A,; - expected noise propagated

Q- quantifies the estimated state covariance

Por = AP i1 AT + Qy

-~ - denotes estimated value.

subscript “a” - KF prior estimations




AN J-DETCI) Data Fusion Measurement innovation and update ;Resu'ts >

Y 1. - innovation

Measurement innovation and update

Zl. - The measurement
C kf(a, L - a priori expected measurement
S L - innovation covariance/believability of the innovation

R ;. - noise covariance in the innovation

CkPa’kCg - predicted innovation covariance

L. - Kalman gain

€, - Normalized Innovation Squared (NIS) metric




(H)i\?grjiaeﬁ Background Data Fusion a pOSterIOrI state eStImate ; Results >

» If NIS value is rejected,

A posteriori state estimate L L= Z€ero,

a posteriori a priori measurement Kalman >k<<

estimate estimate innovation gain

3 Af / - )A(a’k = best estimate
Xsk = Xaq k + Lryx

« If NIS value is falls within the acceptable interval.

~ ~

P,r=I—-LiCy)P,

X s,k - posteriori estimate
~ Accepted
PS, k - covariance

u_n
)

Subscript - measurement update.

| - identity matrix.




High-rate Background Data Fusion Base State eStImatlon

Overview

| 500 mm |
| =
---estimated ——measured

Accelerometer Cart with
Y Rollers
Q

[m]

Clamp
v 21 nodes 101 nodes

L K i
— TRAC:0.962 SNR:14.15 TRAC:0.967 SNR:14.79

Nearest
neighbor

roller location (mm)

TRAC:0.965 SNR:14.48 TRAC:0.969 SNR:15.05
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0 25 50 7.5 10.0 12.5

A Least square
| ‘i | regression

1 J
H

Estimation results obtained using LEMP with a A A
500 W

21-node and 101-node model of the beam and - B 8 W —

_ _ _ _ _ 25 50 7.5 10.0 125 0 25 50 75 10.0 12.5
the previously investigated Gaussian sampling time (s) time (s)
technique without the use of a Kalman filter;

roller location (mm)

termed the “base state”.




High-rate Background Data Fusion 21'n0de mOdeI State estlmatlon

Overview

---estimated measured
> unfiltered estimation -

TRAC:0.972 TRAC:0.970 TRAC:0.969 TRAC:0.966

1SNR:15.45 “\ ., 1SNR:15.21 r'n, 1SNR:15.11 /’ 1SNR:14.68 |
- Y VAN AT Y WA A .

Ly B ' ‘ q ) 1
“""(“ ‘! \;‘ k._ H‘.w ) u MJU w \ | " TAYAY

i - oM ] o ] W W W W "
Bayesmn inference llkehhood rano test Metropohs Hastmg Algonthm Gibbs samphng

TRAC-0.982 TRAC:0.975 TRAC:0.980 TRAC:0.980
{SNR:17.42 ‘%\‘ / 1 SNR:15.98 # Y | {sNRi16.94 p‘q\ f\ 1 SNR:16.92 ,‘ "ﬁ

1 M ”t - A A 1 ﬂ, ’ 1 ML f\ k “.
_;,U\\},;h u \11 :"--“‘“J“ ‘.‘u‘ ‘H -a:‘h;:"u Ly U w NHJH .r!ﬂi b,? "

I w W W ol IR W el "

25 50 7.5 100 125 0 25 50 7.5 100 125 0 25 50 75 100 125 0 25 50 7.5 10.0 12.5
i time (s) time (s) time (s)
» filtered estimation <€ — — — — — — — — — — — — — — — — — — — — —

-

f—
wnh
o

roller location (mm)

w
O

I
I
I
I
I
|

- unfiltered estimation filtered estimation

0.980
0.975 4
&= 0.970

sampling method sampling method
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Overview

Background Data Fusion

21-node model extended view

Roller position estimation using a 21-node
beam model for

(@)
(b)

()

LEMP estimate with no sampling or
Kalman filter methodology

LEMP estimate where roller positions
are sampled using Bayesian search
space

improved LEMP estimate where roller
positions are sampled using the
Bayesian search space and also
filtered with the Kalman filter .
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High-rate Background Data Fusion 101'n0de m0d6| State estlmatlon

Overview

-=-egstimated measured
> unfiltered estimation ==

TRAC:0.969 L TRAC:0.975 p TRAC:0.975 . . TRAC:0.970
SNR:15.09 A4 [ [{sNraeos A [Y [ {sNRiaso4 A {SNR:15.20

' ~ 05t N/
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Bayesian inference likelihood ratio test Metropolis-Hasting Algorithm Gibbs sampling

TRAC:0.984 . A TRAC:0.984 : TRAC:0.984 A TRAC:0.982
1SNR:17.85 ' % | 1SNR:17.86 " A R 1SNR:17.90 - f 1SNR:17.42
. F F W . h
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roller location (mm)
|
I

w
[}

25 50 75 100 125 O 25 50 7.5 100 125 0O 25 50 7.5 100 125 0 2.5 50 7.5 100 125
time (s) time (s) time (s)
» filtered estimation <€ — — — — — — — — — — — — — — — — — — — — _

unfiltered estimation filtered estimation

sampling method sampling method




High-rate

Overiew > Background » Data Fusion Percentage improvement in estimation

I unfiltered filtered

Average percentage improvement in SNRds compared to
estimation without sampling and KF at 21 and 101 nodes for
three particle models over 100 trials

21 nodes

percentage improvement (%)

SNRgg improvement
21 nodes 101 nodes
sampling method  unfiltered filtered unfiltered filtered

Bayesian inference 3.03% 15.86% 0.95% 13.93%
likelihood ratio test 5.30% 17.18% 2.64% 14.69%

Metrop011§-Hast1ng 0.87% 13.27%  -0.18%  13.47%
Algorithm

Gibbs sampling 0.72% 12.53% 0.33% 14.28%
Gaussian sampling base case 13.14% base case 14.69%

101 nodes

percentage improvement (%)

sampling method




Conclusion

.1 The study found that the likelihood ratio test alongside the linear Kalman filter effectively
produced accurate results, with an ~17% increase in accuracy for a 21-node model of
the considered structure.

| The study also highlighted the importance of filtering outliers, as demonstrated by using
the Normalized Innovation Squared (NIS) metric.

| This study successfully improved accuracy over the previous model updating methods,
especially for lightweight models with low node counts on all the methodologies tested.

Future Work

1 In future work, the LEMP algorithm will be applied to more complex state estimation.
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