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Background



Motivation

• A system or structure under normal conditions 
may suddenly shift to a state of shock

• Examples of unexpected shock:

• A car driving down the street

• An ordnance impacting a structure

• A structure in an earthquake

• It’s important to know when a structure is in 
shock

• Earlier detection means faster response

• Responding too late could mean permanent 
structural damage

• Responding too early can also be 
detrimental
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i. https://www.flickr.com/photos/sdasmarchives/4564390777/

ii. Photo by samimibirfotografci : https://www.pexels.com/photo/rescue-team-at-collapsed-building-15533288/

iii. Photo by Zülfü Demir : https://www.pexels.com/photo/damaged-asphalt-road-20518249/

Plane launching projectiles [1] Collapsed building [2]

Damaged road [3]

https://www.flickr.com/photos/sdasmarchives/4564390777/
https://www.pexels.com/photo/rescue-team-at-collapsed-building-15533288/
https://www.pexels.com/photo/damaged-asphalt-road-20518249/


Headline 

• Shock is a sudden departure from the expected
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Changepoint Detection 

• Definition: Change point Detection - “The identification of abrupt changes in the 
generative parameters of sequential data”

• Change point detection involves identifying when a point signifies a change in the 
features of a sequence of data

• We considered an event a ‘change point’ when a change is beyond our expectations of 
the assumed underlying distribution

• Examples:

• Change in mean level

• Shift in amplitude
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Adams, R. P., & MacKay, D. J. (2007). Bayesian online changepoint detection. arXiv preprint 

arXiv:0710.3742.



Experimental Setup



Purpose

• Change point detection used in aberration detection

• Our goal was to measure likelihood of system being in a state of shock

• Given a set of acceleration data, when do we think the response is abnormal

• Abnormal response could mean a damage-inducing event for the electronic system
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https://www.youtube.com/watch?v=kBaZF9kUQLQ



Experiment Setup

• https://github.com/High-Rate-SHM-Working-Group/Dataset-7-forced-vibration-and-shock8

Lansmont Model P30 

shock test system

DC motor

PCB

Click-wheel 

actuator
Drop table

Accelerometer – 

352A92 by PCB 

Piezotronics



Experiment assumptions 

• Constant sampling rate

• Single impact

• Sufficiently distinct impact response

• Consistent structure dynamics
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Our signal: overview

• 500 ms of data

• Sampling rate: 1.0x106/sec

• Impact after approximately 
470 ms

• Large amplitude response

• Response returns to steady 
~570 ms into experiment
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Our signal: time domain

• PCB vibrated over entire 
experiment

• Impact response >> steady 
state

• Normal vibration ~10 m/s2
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Our signal: time domain

• High amplitude acceleration

• Peak acceleration >2,000 m/s2
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Our signal: frequency domain

• Frequency spectra for signal sections:
• Before  impact

• During/immediately after

• After impact

• Modes excited greatly
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Our signal: frequency domain

• Spectrogram of signal

• impact causes high excitation

• Most energy dissipates in ~100 
ms
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Online vs Offline Algorithms

Online Detection

• Computes over successive 
points in a sequence

• Typically lower computation 
cost

• Faster

• Less accurate

• Change points identified as 
algorithm runs

Offline Detection

• Computes over complete 
sequence

• Typically more computationally 
expensive

• Slower

• More accurate

• Number of change points can 
be given or guessed
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Online Algorithms

• Bayesian Online Changepoint Detection (BOCPD) [1]

• Uses Bayesian statistics to model data over various run lengths

• Decides if run length is likely to have reset since last change point

• Expectation Maximization (EM) [2]

• Fits Gaussian models to known groups of data

• Decides which model a given point best fits

• Grey Systems Modeling (GM) [3]

• Transforms window of data two scalar describing behavior

• Determines if behavior is sufficiently different

• Cumulative Summation (CUSUM) [4]

• “Detects shifts in mean level of sequential data”

• Determines if a significant shift has occurred in current mean from prior process mean
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1. “Bayesian Online Changepoint Detection” Adams & MacKay 2007.

2. Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977), Maximum Likelihood from Incomplete Data Via the EM Algorithm. Journal of the Royal Statistical Society: 

Series B (Methodological), 39: 1-22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x

3. J. L. Deng. 1989. Introduction to Grey system theory. J. Grey Syst. 1, 1 (1989), 1–24.

4. G. Comert, M. Rahman, M. Islam and M. Chowdhury, "Change Point Models for Real-Time Cyber Attack Detection in Connected Vehicle Environment," in 

IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 12328-12342, Aug. 2022, doi: 10.1109/TITS.2021.3113675.



Online Algorithms

• Bayesian Online Changepoint Detection (BOCPD)

• Expectation Maximization (EM)

• Grey Systems Modeling (GM)

• Cumulative Summation (CUSUM)
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algorithm movement compares decision criterion

BOCPD Point-by-point Highest probability of current run length Most likely run length has 

decreased

EM Point-by-point Point-of-interest to distribution of safe 

data and distribution of unsafe data

Probability that point is not safe 

exceeds boundary

GM Sliding window Window to reference window Difference between sequence 

behaviors exceeds threshold

CUSUM Point-by-point Current mean estimate to process 

mean

Current mean estimate deviates 

from process mean by more than 

threshold



Online Algorithms

• Bayesian Online Changepoint Detection (BOCPD)

• Expectation Maximization (EM)

• Grey Systems Modeling (GM)

• Cumulative Summation (CUSUM)
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algorithm prediction function algorithmic time complexity

BOCPD argmax
𝑖−1

(𝑝 𝑟𝑖−1, 𝑋1:𝑖−1 ) > argmax
𝑖

(𝑝 𝑟𝑖 , 𝑋1:𝑖 ) O(mn), m<=n

EM normpdf(𝑥, 𝜇2, 𝜎2
2) > 0.01 O(mkn), m = set size, k = number of iterations

GM 𝜖𝑖𝑗 ≤ 0.5 ∪ 𝜖𝑟 ,𝑖𝑗≤ 0.5, where ϵ & ϵr are 

thresholds

O(nw), w = window size

CUSUM (𝐶𝑖
+ > 𝐻 ∪ 𝐶𝑖

− > 𝐻), where H is a threshold O(n)



Hyperparameters vs Parameters

• Hyperparameters

• Initial values chosen by the user

• Indirectly affect the overall performance of the model

• Constant throughout model performance

• Parameters

• Variables modified by the model itself

• Describe the model’s assumptions of the underlying data

• Updated by the model
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Model Theory and Results



Evaluation - Baseline

• Used an offline method as ground-truth for state of system

• Python ruptures library

• Binary segmentation

• Rank cost function

• This estimate matches our expectations of where shock starts and ends
• Start of shock: 473.764 ms

• End of shock: 584.244 ms

21 C. Truong, L. Oudre, N. Vayatis. Selective review of offline change point detection 

methods. Signal Processing, 167:107299, 2020.



Evaluation - Metrics

• Confusion Matrix

• Accuracy - Total proportion of correctly guessed values

• Precision – Proportion of positive predictions that were truly positive

• Recall – Proportion of positive values that were correctly predicted

• F1 score – Harmonic mean of precision and recall

• Earliest correct – Earliest correctly predicted positive detection
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Confusion Matrix

Predicted 

Negative

Predicted 

Positive

Truly 

Negative
TN FP

Truly 

Positive
FN TP

Metric Equation

Accuracy 𝑇𝑃 + 𝑇𝑁

(𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃)

Precision 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)

Recall 𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)

F1 score 𝑇𝑃

𝑇𝑃 +
𝐹𝑁 + 𝐹𝑃

2
https://github.com/austindowney/Machine-Learning-for-Engineering-

Problem-Solving

Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, 

pp. 2825-2830, 2011.



Bayesian Online Changepoint Detection 
(BOCPD): Theory (pt. 1) 

• Definition: run length – the length of a sequence between two change points

• Run length can only increase by 1 or reset to 0

• Calculation of future run lengths can be performed recursively

• Computes and tracks distribution of run-length probabilities

• If distribution shifts, then a change point must have occurred
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Hyperparameter interpretation

μ Prior mean of data

κ Degrees of freedom

α Half of degrees of freedom

β Prior scaling value for the data

lambda Number of time steps until change point anticipated

“Bayesian Online Changepoint Detection” Adams & MacKay 2007.



Bayesian Online Changepoint Detection 
(BOCPD): Theory (pt. 2)
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parameter symbol update equation

Mean – (prior mean)
μ 𝜇0, . . , 𝜇𝑡−1 → [𝜇,

𝜅0 ∙ 𝜇0 + 𝑥𝑖
𝜅0 + 1

, . . ,
𝜅𝑡−1 ∙ 𝜇𝑡−1 + 𝑥𝑖

𝜅𝑡−1 + 1
]

Kappa – (degrees of 

freedom)
κ

𝜅0, . . , 𝜅𝑡−1 → [𝜅, 𝜅0 + 1. . 𝜅𝑡−1 + 1]

Alpha – (1/2 degrees of 

freedom
α

𝛼0, . . , 𝛼𝑡−1 → [𝛼, 𝛼0 +
1
2
, . . 𝛼𝑡−1 +

1
2
]

Beta – (average deviation 

from mean) β

𝛽0, . . , 𝛽𝑡−1

→ [𝛽, 𝛽0 +
𝜅0 ∗ 𝑥𝑖 − ҧ𝑥 2

2 ∗ 𝜅0 + 1
, . . , 𝛽𝑡−1 +

𝜅𝑡−1 ∗ 𝑥𝑖 − ҧ𝑥 2

2 ∗ 𝜅𝑡−1 + 1
]

“Bayesian Online Changepoint Detection” Adams & MacKay 2007.



Bayesian Online Changepoint Detection 
(BOCPD): Performance

• Very high precision, high recall

• Great accuracy

• F1 score suggests excellent balance

• Results highly dependent on 
hyperparameters
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Hyperparameter value

μ Mean([0:50])

κ 50

α 25

β 50 / var([0:50])

lambda 100

Predicted 

False

Predicted True

Actually False 77.9% 0.0%

Actually True 12.2% 9.9%

Accuracy Precision Recall F1 score Earliest 

Correct 

(ms)

0.944 0.985 0.758 0.857 473.784
“Bayesian Online Changepoint Detection” Adams & MacKay 2007.



Expectation Maximization (EM): Theory (pt. 1)

• The EM algorithm has two steps:

1. Expectation step - calculate probability of each item in set belonging to unsafe 
group

2. Maximization step - update means, variances, and probability for each group

• The algorithm iterates over these two steps until parameters converge to stable values

26

Hyperparameter interpretation

μ1 Prior mean of safe data

μ2 Prior mean of unsafe data

σ1 Prior standard deviation of safe data

σ2 Prior standard deviation of unsafe data

π Probability of data point being unsafe

Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977), Maximum Likelihood from Incomplete Data Via the EM Algorithm. Journal of the Royal Statistical Society: 

Series B (Methodological), 39: 1-22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x



Expectation Maximization (EM): Theory (pt. 2)
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parameter symbol update equation

Safe mean μ1 σ𝑖=1
𝑁 (1 − (𝑝(𝑌𝑖~𝑁 Ƹ𝜇2, ො𝜎2

2 ) ∙ 𝑌𝑖))

σ𝑖=1
𝑁 (1 − 𝑝(𝑌𝑖~𝑁 Ƹ𝜇2, ො𝜎2

2 ))

Change mean μ1 σ𝑖=1
𝑁 (𝑝(𝑌𝑖~𝑁 Ƹ𝜇2, ො𝜎2

2 ) ∙ 𝑌𝑖)

σ𝑖=1
𝑁 (𝑝(𝑌𝑖~𝑁 Ƹ𝜇2, ො𝜎2

2 )

Safe variance σ2 σ𝑖=1
𝑁 (1 − (𝑝(𝑌𝑖~𝑁 Ƹ𝜇2, ො𝜎2

2 ) ∙ 𝑌𝑖 − Ƹ𝜇2
2)))

σ𝑖=1
𝑁 (1 − 𝑝(𝑌𝑖~𝑁 Ƹ𝜇2, ො𝜎2

2 )

Change variance σ2 σ𝑖=1
𝑁 (𝑝(𝑌𝑖~𝑁 Ƹ𝜇2, ො𝜎2

2 ) ∙ 𝑌𝑖 − Ƹ𝜇2
2)

σ𝑖=1
𝑁 (𝑝(𝑌𝑖~𝑁 Ƹ𝜇2, ො𝜎2

2 )

Attack probability π 1
𝑁
σ𝑖=1
𝑁 (𝑝 𝑌𝑖~𝑁 ෝ𝜇2,ෝ𝜎2

2 ∙𝑌𝑖

Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977), Maximum Likelihood from Incomplete Data Via the EM Algorithm. Journal of the Royal Statistical Society: 

Series B (Methodological), 39: 1-22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x



Expectation Maximization (EM): Performance

• Very high precision, low 
recall
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Predicted 

False

Predicted True

Actually False 76.8% 1.12%

Actually True 12.7% 9.4%

Accuracy Precision Recall F1 score Earliest 

Correct 

(ms)

0.862 0.880 0.434 0.582 474.623

hyperparameter value

μ1 Mean([0:100,000])

μ2 20.0

σ1 Std([0:100,000])

σ2 Sqrt(10)

π 0.30

Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977), Maximum Likelihood from 

Incomplete Data Via the EM Algorithm. Journal of the Royal Statistical Society: Series 

B (Methodological), 39: 1-22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x



Grey Systems Modeling (GM): Theory (pt. 1)

• Based around the idea of extrapolating information from observed data

• Data must be nonnegative, smooth, discrete

• Compares behavior of reference window of observations to window of interest

29

hyperparameter interpretation

n Number of points in window

c Threshold for difference in behavior

c Threshold for ratio of behavior

J. L. Deng. 1989. Introduction to Grey system theory. J. Grey Syst. 1, 1 (1989), 1–24.



Grey Systems Modeling (GM): Theory (pt. 2)
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parameter symbol update equation

X(0) – (sequence of 

observations)

X(0) 𝑋(0) = 𝑋[𝑘: 𝑘 + 𝑛]

X(1) – (cumulative sum of 

sequence)

X(1)

𝑋 1 = [𝑋 0 (0), . . ,
𝑖=1

𝑘

𝑋 0 (𝑖) , . . ,𝑋(0)]

Z(1) – (running mean of 

sequence)

Z(1)
𝑍 1 = [𝑋 1 0 , . . , 𝑋

1 𝑘−1 +𝑋 1 (𝑘)
2 ,..,

𝑋 1 𝑛−1 +𝑋 1 (𝑛)
2 ]

Si – (behavioral sequence of 

sequence)

Si 𝑠𝑖 =
𝑘=1

𝑛−1

(
𝑋𝑖
(0)

𝑘 −𝑋𝑖
0
(1)

2 )+
𝑋𝑖
(0)

𝑛 −𝑋𝑖
0
(1)

2

ϵij – (absolute degree of grey 

incidence)

ϵij 𝜖𝑖𝑗 =
1+ 𝑠𝑖 + 𝑠𝑗

1+ 𝑠𝑖 + 𝑠𝑗 +𝑐⋅ 𝑠𝑖−𝑠𝑗

J. L. Deng. 1989. Introduction to Grey system theory. J. Grey Syst. 1, 1 (1989), 1–24.



Grey Systems Modeling (GM): Performance

• Recall better than 
precision
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Predicted 

False

Predicted True

Actually False 63.1% 14.8%

Actually True 4.85% 17.2%

Accuracy Precision Recall F1 score Earliest 

Correct 

(ms)

0.803 0.538 0.780 0.637 473.858

hyperparameter value

n 100

c 3.0

C_ratio 0.01

J. L. Deng. 1989. Introduction to Grey system theory. J. Grey Syst. 1, 1 (1989), 1–24.



Cumulative Summation (CUSUM): Theory (pt. 
1)

• Detects shifts in mean level

• Assumptions:

• Process follows normal distribution

• Mean and standard deviation of process is known

• Change point detected if either deviation exceeds threshold
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Hyperparameter interpretation

μ Assumed mean of the process

α Weight parameter

G. Comert, M. Rahman, M. Islam and M. Chowdhury, "Change Point Models for Real-Time Cyber Attack Detection in Connected 

Vehicle Environment," in IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 12328-12342, Aug. 2022, doi: 

10.1109/TITS.2021.3113675.



Cumulative Summation (CUSUM): Theory (pt. 
2)
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parameter symbol update equation

C𝑖
+ - (positive deviation from target) 𝐶𝑖

+ 𝐶𝑖
+ → max(0, 𝐶𝑖−1

+ + 𝛼∙𝐷𝑖
𝜎2

(𝑌𝑖 − 𝐷𝑖 −
𝛼∙𝐷𝑖
2 ))

C𝑖
−- (negative deviation from target) 𝐶𝑖

−
𝐶𝑖
− → max(0, 𝐶𝑖−1

− + 𝛼∙𝐷𝑖
𝜎2

(𝑌𝑖 − 𝐷𝑖 −
𝛼∙𝐷𝑖
2 ))

𝐷𝑖 - (difference between weighted 

average and process mean)

𝐷𝑖 𝐷𝑖 → 𝜇𝑖−1 − 𝜇

𝜇𝑖 - (weighted average of value and 

previous average)

𝜇𝑖 𝜇𝑖 → 𝛼 ∙ 𝜇𝑖−1 + (1 − 𝛼) ∙ 𝑋𝑖

G. Comert, M. Rahman, M. Islam and M. Chowdhury, "Change Point Models for Real-Time Cyber Attack Detection in Connected 

Vehicle Environment," in IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 12328-12342, Aug. 2022, doi: 

10.1109/TITS.2021.3113675.



Cumulative Summation (CUSUM): Performance

• Performed well overall

• Approximately equal false positive
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Predicted 

False

Predicted True

Actually False 72.6% 5.3%

Actually True 4.3% 17.8%

Accuracy Precision Recall F1 score Earliest 

Correct 

(ms)

0.904 0.771 0.807 0.788 473.778

Hyperparameter Value

μ mean([0:100,000])

α 0.95

G. Comert, M. Rahman, M. Islam and M. Chowdhury, "Change Point Models for Real-

Time Cyber Attack Detection in Connected Vehicle Environment," in IEEE 

Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 12328-12342, 

Aug. 2022, doi: 10.1109/TITS.2021.3113675.



Comparison of Online-CPD Algorithms

• Bayesian Online Changepoint Detection had the best accuracy, 
precision, and F1 score overall

• CUSUM detected the shock state earliest

• Grey Model has the best recall
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Accuracy Precision Recall F1 score Earliest 

Correct 

(ms)

Detectio

n Delay 

(ms)

BOCPD 0.944 0.985 0.758 0.857 473.784 0.020

EM 0.862 0.880 0.434 0.582 474.623 0.859

GM 0.803 0.538 0.780 0.637 473.858 0.094

CUSUM 0.904 0.771 0.807 0.788 473.778 0.904



Conclusion



Conclusion 

• This paper demonstrates that each algorithm can classify whether a system is in shock

• A proper data transformation can significantly improve model performance

• Model selection is highly dependent on:

• Process assumptions (what data can be collected)

• Desired level of performance

• Acceptable amount of error tolerance

• Propose using a combination of models:

• A fast model with low false negative rate

• A more robust model to verify prediction

• Future work:

• Selecting appropriate transformations to improve algorithm performance

• Implementing algorithms in hardware-setting
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