
Proceedings of The ASME 2024 Conference on Smart Materials, Adaptive Structures and
Intelligent Systems

SMASIS2024
September 9-11, 2024, Atlanta, GA, USA

SMASIS2024-111009

REAL-TIME SHOCK EVENT CLASSIFICATION FROM UNIVARIATE STRUCTURAL
RESPONSE MEASUREMENTS

Zhymir Thompson
Department of

Mechanical Engineering
University of South Carolina

Columbia, South Carolina 29208
Email: zhymir@email.sc.edu

Gurcan Comert
Department of

Engineering and Computer Science
Benedict College

Columbia, South Carolina 29204
Email: gurcan.comert@benedict.edu

Devon Goshorn
Department of

Mechanical Engineering
University of South Carolina

Columbia, South Carolina 29208
Email: goshorna@email.sc.edu

Joud N. Satme
Department of

Mechanical Engineering
University of South Carolina

Columbia, South Carolina 29208
Email: jsatme@email.sc.edu

Austin R.J. Downey
Department of

Mechanical Engineering
Department of Civil and

Environmental Engineering
University of South Carolina

Columbia, South Carolina 29208
Email: austindowney@sc.edu

Jason D. Bakos
Department of

Computer Science and Engineering
University of South Carolina

Columbia, South Carolina 29208
Email: jbakos@cse.sc.edu

ABSTRACT
To enable real-time control of next-generation active struc-

tures during shock events, there is a need to identify the start of
a shock event within microseconds of its initiation. The delayed
classification of a shock event may cause damage to the system
that could have been prevented with assumed next-generation ac-
tive control mechanisms. Addressing the challenge of ultra-low
latency shock event classification requires utilizing prior infor-
mation on normal behaviors (i.e., the system under vibrational
loading) to identify abnormalities that can be classified as fea-
tures of a shock event. The purpose of changepoint shock classi-
fication is to automatically recognize when a structure of interest
behaves differently than expected in some measurable way. In
this work, we analyze two different methods for shock classifica-
tion using changepoint methodologies. We study the use of adap-
tive cumulative summation and expectation maximization algo-
rithms in this work. Each method presents advantages and dis-

advantages for different scenarios. This study aims to derive fea-
tures (streams of time series data) for the changepoint algorithms
and revise the changepoint models to be used in real-time robust
shock event detection. In this work, a printed circuit board un-
der continuous vibrations before, during, and after a shock event
is used to investigate the proposed methodologies. The printed
circuit board is monitored with an accelerometer that is used to
monitor both the vibrational and shock state of the system. The
vibrational response of the system consists of accelerations up
to 20 m/s2, while the shock event consists of loadings up to
2,000 m/s2. This work showed that the CUSUM algorithm is
fairly effective at identifying the shock state in data but gener-
ates many false positives during normal behavior times, with no
false positives post-shock, indicating accurate shock state detec-
tion despite early errors. In contrast, the Expectation Maximiza-
tion (EM) algorithm shows improved performance by correctly
predicting no shock in the initial phase and accurately identifying
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the onset of the shock state. It occasionally misclassifies shocked
points as normal due to its change point identification process.
Compared to CUSUM, EM has fewer false positives before the
shock and similar performance during and after the shock event.
Future research efforts will focus on developing online versions
of these algorithms, which can identify system states with a min-
imum number of errors. The limitations of the system and its
robustness to noise are discussed.

INTRODUCTION
Buildings and vehicles are examples of structures that are

expected to undergo stress regularly. These structures en-
counter both static, consistent stress and sudden inconsistent
stress throughout their lifetimes, and are expected to respond ap-
propriately to mitigate damage. Static stress could be the weight
of the structure itself, or some force applied consistently to the
structure. Inconsistent stress could be an earthquake, a sudden
impact, or a strong gust of wind. High-rate dynamic events are
an extreme of the second type of stress described. High-rate dy-
namic events are such where high force (> 100gn) is applied to a
structure in a short time-frame (< 100 ms) [1]. All of these types
of stress are usually expected to occur at some point, but it is not
definitively known when exactly that time will come.

Structures can be designed to respond to both of these types
of stress. Mitigation strategies can generally be split into pas-
sive and active damage mitigation. Passive damage mitigation
involves designing a structure that is capable of responding to
stress without processing data to make a decision. Active dam-
age mitigation relies on a device to make a decision given some
input and execute a specific behavior to respond. Passive damage
mitigation tends to be more common, and structures are designed
with their expected wear in mind. For example, cars incorporate
crumple zones in the front and rear to reduce impact from head-
on collisions. Buildings are designed with a strong foundation
and numerous support points to improve their integrity. Shock
events, sudden impacts that disturb and excite the normal modes
of a structure [2], are inconsistent, dynamic events. Since shock
events excite the preexisting modes of a structure, an active mit-
igation strategy would first need to be able to identify abnormal
behavior compared to expected behaviors. Further, to respond
to and reduce the impact of these unexpected shock events ef-
fectively, one would need to classify and respond to the event in
real-time.

Real-time identification of aberrant behavior requires both a
fast algorithm and suitable hardware. There are several methods
for detecting these changes. However, not all of these methods
are fast enough to be used in real-time identification. Similarly,
not all of these methods are suitable for use on an edge device.
If a method requires too much memory such that it cannot rea-
sonably fit on an edge device, it is unlikely to be capable of per-
forming under real-time performance constraints.

Changepoint detection algorithms are an existing collection
of methods for detecting abnormal behavior in a sequence of ob-
servations [3]. Changepoint detection algorithms are divided into
offline and online algorithms. Offline algorithms typically take
a sequence of observations and an expected number of change-
points as input. They then compute the optimal changepoints to
divide the data. Online changepoint detection algorithms nor-
mally utilize statistics and prior knowledge about the expected
data to decide if some given observation deviates enough from
what is expected to constitute labeling as abnormal. Offline al-
gorithms work best when the number of changepoints is known.
They tend to be more accurate, but they also tend to be signif-
icantly slower as a tradeoff. Online algorithms tend to be less
accurate, but in exchange, they are faster. A selection of online
methods for the detection of changepoints are described. Specifi-
cally, the pros and cons of the Cumulative Summation (CUSUM)
and Expectation Maximization (EM) algorithms are weighed.

METHODOLOGY
This section explains the experimental setup and machine

learning model developed for this work

Experimental setup
A custom dataset was developed for this work that seeks to

mimic an electronic system under continuous excitation that ex-
periences a shock event. To expand, the developed dataset mim-
ics an electronic system on a car driving down the road (i.e. con-
tinuous vibrations) where it then encounters a pothole (impact).
The experimental system is shown in Figure 1 where the elec-
tronics package is mounted on the table of a Lansmont Model
P30 shock test system. A DC motor in a 3D-printed housing
drives a click wheel that is connected to the mount holding the
printed circuit board (PCB) using a short carbon steel beam.
Then, by exciting the PCB with the click-wheel actuator and
subjecting it to shock loading using the drop table, the setup gen-
erates a continuous forced vibration before, after, and during a
shock event. An accelerometer (model 352A92 manufactured by
PCB Piezotronics) was used to record acceleration at a rate of
1 MS/s. This dataset has been made available through a public
repository [4].

Figure 2 displays the acceleration data for the dataset along
with overlays for different sections of interest. The leftmost over-
lay shows the normal oscillations of the circuit board. The accel-
eration is normally around 10 m/s2 occasionally increasing to
at most 20 m/s2. These oscillations last for about 45 microsec-
onds before the disruption to the system. The disruption occurs
about 45 microseconds into the experiment run. The acceleration
spikes and the system is considered to be in a state of shock. The
acceleration spikes to over 2,000 m/s2 before slowly dropping
down to pre-shock levels. The spikes are consistent and decrease
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FIGURE 1. Image of the test, showing: (a) the shock test system, (b) the front view of the test setup on the drop table, and (c) the side view of the
test setup on the drop table.

FIGURE 2. A plot of the accelerometer data. Overlays are included to zoom in on sections of the data before and after the shock event.

to a base level. The rightmost overlay shows the aftermath of
the shock event. The signal has returned to acceleration values
reminiscent of those before the shock was introduced.

The difference between normal and abnormal acceleration
is expressed in Figure 2. The peak acceleration at shock is two
orders of magnitude higher than the peak acceleration before the
shock. A change in dynamics occurred between 45 microsec-
onds and 58 microseconds. The point at which the change began
is more difficult to determine. The change occurred before the
first peak, but visually that specific point is nearly impossible to
determine. This task becomes even more difficult in the moment.
A sudden increase in acceleration could be the start of a shock or
accountable error. It is also difficult to determine at what point
the system is no longer in a state of shock. By 60 microsec-
onds the effects of the shock had dissipated. The effects could
have worn off at 57 microseconds or 59 microseconds. The ex-
act point at which a shift to normal behavior occurred is difficult
if not impossible to pinpoint.

Figure 3 shows the power spectrum for different sections

of time in the example signal. (a) and (c) have similar power
spectra while (b) differs noticeably. This is further evidence that
the effects of the shock had mostly dissipated by the end of the
experiment. This difference also hints at what one would expect
a sufficient shock classification model to infer.

Model Development
Two methods are demonstrated in this work. Here we briefly

explain the methods and their pros and cons.
Adaptive cumulative summation is an online method for de-

tecting potentially abnormal events for a given sequential pro-
cess [5]. The adaptive Algorithm 1 compares the means of the
previous and current events to determine if the current event is
likely to be a change.

The direct usefulness of the CUSUM algorithm lies in qual-
ity control, where the mean process level is monitored by the
CUSUM chart or algorithm. In this study, CUSUM is used to
monitor the state while detecting changes. The method assumes
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FIGURE 3. Power spectrum for the data in Figure 2. (a) is the spectrum for the time period before the shock, (b) is for the time period containing the
shock evenet, and (c) for after the shock.

an identically independently distributed variable Yi having known
(µ1,σ

2), and µ2, a new process mean of the variable Yi which is
estimated after observing a possible shift. Following CUSUM
parameters are selected: K = δσ/2, H = 5σ , and δ = 1.

Algorithm 1 CUSUM for detecting changes in series of N ob-
servations

Require: Choose parameters, µ = Y 1:20, σ =
√

S2
Y1:20

, K =

δσ/2, δ = 1, α = 0.025
1: Choose parameters, H is set to 5σ

2: for Yi ∋ i ∈ 1 : N do
3: C+

i = max{0,C+
i−1 +

αDi
σ2 [Yi −Di −αDi/2]}

4: C−
i = max{0,C−

i−1 −
αDi
σ2 [Yi +Di +αDi/2]}

5: Di = µ i−1 −µi
6: µ i = αµ i−1 − (1−α)Yi
7: if C+

i > H or C−
i > H then Yi is a change of state, set:

C+
i =C−

i = 0
8: end if
9: end for

The adaptive algorithm is used for processes having other
than zero means, and it has a single weight parameter (α) [6]. In
Algorithm 1, Di = (µ̄i −µ1) and µ̄i = αµ̄i−1 +(1−α)Yi at time
step i. For fewer false positive detections, we have considered
H = 5σ . The C+

i and C−
i represent the positive deviations (val-

ues above the target) and negative deviations (values below the

target), respectively. In this study, we do not assume the normal
mean and standard deviations to be known. We calculate them
from a few normal values as µ = Ȳ1:20, σ =

√
S2

Y1:20
.

Algorithm 2 EM for detecting two mixtures in series of N ob-
servations
Require: Two classes of observations X1:100 = [X1:70 ∼

N(Y 1:70,S2
Y1:70

),X71:100 ∼ N(100,202),Yi]
1: Initialize parameters, Θ = (µ1,µ2,σ1,σ2,π) (alternatively

from X1:100)
2: for Yi ∋ i ∈ 1 : N do
3: for j ∈ 1 : 11 do
4: p(Yi ∼ N(µ̂2, σ̂

2
2 )) = π̂φ(Yi|µ̂2, σ̂

2
2 )[π̂φ(Yi|µ̂2, σ̂

2
2 )+

(1− π̂)φ(Yi|µ̂1, σ̂
2
1 )]

5: end for
6: µ̂1 =

∑
N
i=1(1−p(Yi∼N(µ̂2,σ̂

2
2 ))Yi)

∑
N
i=1(1−p(Yi∼N(µ̂2,σ̂

2
2 )))

7: µ̂2 =
∑

N
i=1 p(Yi∼N(µ̂2,σ̂

2
2 ))Yi

∑
N
i=1 p(Yi∼N(µ̂2,σ̂

2
2 ))

8: σ̂2
1 =

∑
N
i=1(1−p(Yi∼N(µ̂2,σ̂

2
2 ))(Yi−µ̂1)

2)

∑
N
i=1(1−p(Yi∼N(µ̂2,σ̂

2
2 )))

9: σ̂2
2 =

∑
N
i=1 p(Yi∼N(µ̂2,σ̂

2
2 ))(Yi−µ̂2)

2

∑
N
i=1 p(Yi∼N(µ̂2,σ̂

2
2 ))

10: π̂ =
∑

N
i=1 p(Yi∼N(µ̂2,σ̂

2
2 ))Yi

N
11: if p(Yi ∼ N(µ̂2, σ̂

2
2 ))> 0.01 then Yi is a change of state

12: end if
13: end for
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FIGURE 4. A plot of the shock states estimated by the CUSUM algorithm. Blue shading indicates the algorithm predicted the system was not in a
state of shock. Red shading indicates the algorithms predicted the system was in a state of shock.

FIGURE 5. A plot of the shock states estimated by the expectation-maximization algorithm. Blue shading indicates the algorithm predicted the
system was not in a state of shock. Red shading indicates the algorithms predicted the system was in a state of shock.

Gaussian mixtures classify input data as one of some num-
ber of groups [7,8]. Each event is compared to the prior statistics
for previously classified events, and that information is used to
classify the current event. We use the expectation maximiza-
tion (EM) algorithm to calculate and update the prior informa-
tion. The EM algorithm calculates the probability of an unknown
event belonging to one of two groups given the prior information
and samples from the groups. The algorithm goes back and forth
between calculating these probabilities and updating the statis-
tics data used to calculate them for some number of iterations.
Finally, the Algorithm 2 computes the probability of an event
being a change from a normal state with some percentage of cer-
tainty.

First, a list of sample data is generated to initialize nor-
mal and abnormal distributions. In this study, first hun-
dred (N − 1) values of the data to generate 70 vibration data
X1:70 ∼ N(Ȳ1:70, S2

Y1:70
) and three significantly different values

to represent possible unknown shocks, for instance X71:100 ∼
N(100,202). Then, the new observation Yi is estimated to belong

to one of the states. We can initialize using a small no-shock
sample data X1:70 or by the expert opinion of no-shock/shock
values. Parameters are initialized for (i) Gaussian no-shock ob-
servations and (ii) shock mean, variance, and proportion, denoted
as Θ = (µ1, µ2, σ1, σ2, π). Then, until convergence, we calcu-
late responsibilities for N = 1, . . . ,101, where the last value X101
is Yi, and the probability of shock is calculated p(Yi ∼ N(µ̂2, σ̂

2
2 ).

Results
Figure 4 shows the plot of the states predicted using the

CUSUM algorithm. The algorithm achieves a fair performance
in identifying the shock state of the data. There are a multitude
of false positives in the normal behavior time frame of the data.
This is especially interesting since there are no false positives af-
ter the shock event. Despite the initial false positives, the model
correctly identifies when the model entered a state of shock.

Figure 5 shows the inferred state of the data given by the
EM algorithm. The algorithm correctly predicted that no shock
occurred in the first 45 microseconds of the experiment. Fur-
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ther, the algorithm identifies the beginning of the shock state.
There are points throughout the shock state that the algorithm
determined were not shocked despite surrounding observations
being shocked. This is due to the process that the algorithm
uses to identify change points. The points identified as not be-
ing shocked have statistics that more closely match normal ob-
servations than abnormal observations. Despite this, the overall
area of the shock is correctly classified. Compared to CUSUM,
expectation-maximization had fewer false positives in the pre-
shock observations and performed similarly during and after the
shock event.

CONCLUSION
This work compared two online changepoint detection algo-

rithms. The CUSUM algorithm performed well but had many
false positives before the shock event occurred. By contrast,
the EM algorithm had no false positives before the shock event.
Both identified the start of the shock event, and both identified
the majority of the shock event correctly with some false neg-
atives throughout. Overall, the EM algorithm performs better,
but it is much slower than the CUSUM algorithm. Future work
will involve optimizing these algorithms to be viable in real-time
environments. This work will involve making the existing algo-
rithms more accurate and robust to noise in the input data.
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