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OBJECTIVE
• HW/SW stack for High-Rate Machine Learning (HRML) applications:

• Associated with a cyber physical system

• Inference at KHz/MHz rates

• Have real-time latency constraint of 
1

𝑟𝑎𝑡𝑒
 (s/ns)

• Embedded platform: minimal resources needed for a particular accuracy

𝑇𝑠 𝑇𝑠 𝑇𝑠 𝑇𝑠
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Applications:
Intelligent airbags, blast mitigation, active vibration dampening, etc.



DROPBEAR
• Dynamic Reproduction of Projectiles in Ballistic Environments for 

Advanced Research

• Developed by AFRL at Eglin AFB

Input Signal: Acceleration

Output Signal: Roller Position

accelerometerbeamroller
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DROPBEAR DATASET

• Sample rate: 5 KHz
• 𝑇𝑠 = 200 𝜇𝑠

• 150 experimental runs

• 3 categories of roller 
behavior

random index sets slow positional index sets standard index sets
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MODEL DEPLOYMENT

n most recent 

samples

nc convolution 

blocks

c1, c2, …, cnc

output channels

nl LSTM cells

l1, l2, …, lnl 

units

nl dense 

layers

d1, d2, …, dnl

neurons

pin position

• Dataflow approach (hls4ml/FINN):

• Allocate dedicated systolic array for each layer

• # multipliers = 𝑏𝑙𝑜𝑐𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑀𝑉𝑀 𝑠𝑖𝑧𝑒

𝑟𝑒𝑢𝑠𝑒 𝑓𝑎𝑐𝑡𝑜𝑟

• All weight tensors stored in on-chip ROMs

• Outputs transferred via FIFOs

• "Traditional" overlay approach (TPU, VTA, Gemmini):

• One systolic array shared by all layers

• Weights, inputs, and outputs exchanged with off-chip memory

RAM

R
A

M

RAM

DRAM

head

dense1 or

dense256
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EXAMPLE MODEL

• hls4ml:

• 1.4 x 1010 valid 
reuse factor 
permutations

With RFs shown:

• 177 total multipliers

• Latency = 12250 cycles (49 s @ 250 MHz)

• 230K LUT (94%), 298 BRAM (47%) (on ZCU104)

FCCM 20256

conv16
397x3x16

conv16
199x48x16

conv16
100x48x64

conv16
51x48x16

conv16
26x48x16

dense76
192x76x1

dense76
76x76x1

395,1 197,16

dense76
76x76x1

98,16 49,16 24,16

12,16 1,76 1,76 dense76
76x76x1

1,76 dense1
76x1x1

1,76 1

4x4 4x4 4x4 4x4

768 304 1444 304

4x4

19

RF->
sys. array ->

3 48 48 48 48

19x1 19x2 4x2 19x2 4x2sys. array ->
RF->



EXAMPLE MODEL

• hls4ml:

• 31 total multipliers

• Latency = 54K cycles (216 s @ 250 MHz)

• 174K (-56K) LUTs, 279 (-19) BRAMs

• MAESTRO systolic array overlay:

• 16x16 systolic array

• 256 KB weight buffer/128 KB output buffer

• 4 word/cycle off-chip memory bandwidth

• Latency = 221K cycles (884 s @ 250 MHz)

conv16
397x3x16

conv16
199x48x16

conv16
100x48x64

conv16
51x48x16

conv16
26x48x16

dense76
192x76x1

dense76
76x76x1

395,1 197,16

dense76
76x76x1

98,16 49,16 24,16

12,16 76 76 dense76
76x76x1

76 dense1
76x1x1

76 1

2x1 2x2 2x2 2x2

14592 5776 5776 5776

1x1

76

RF->
sys. array ->

24 192 192 192 768

2x1 2x2 2x2 2x2 2x1sys. array ->
RF->
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N-TORC: AUTOMATIC DESIGN DEPLOYMENT
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Training data

i.e. DROPBEAR

Target 

sample rate

Set of HW deployed models:

1. Meets latency constraint

2. Minimal cost for its 

accuracy (Pareto optimal)

NEED:

1. Cost/performance models for individual hls4ml layers

2. Method to optimize the reuse factor of each layer to meet constraint and minimize cost

3. Method to generate a set of optimal DROPBEAR models w.r.t. accuracy and cost



COST/PERFORMANCE MODEL
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layer 

type

input tensor 

size

weight 

tensor size

reuse 

factor

# LUTs

# FFs

# BRAMs

# DSPs
latency

layer

cost/

performance 

model

• Cost/performance prediction for HLS is an open problem

• N-TORC advantage: restricted parameter space



HLS4ML PERFORMANCE MODEL

n_out = # output channels n_out = # units x 4 n_in = # inputs

FCCM 202510

log2(block factor)

block factor = #multipliers

log2(block factor)

block factor = #multipliers
log2(block factor)

block factor = #multipliers



HLS4ML PERFORMANCE MODEL

n_in = # inputs
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HLS4ML COST/PERFORMANCE MODELING

Enumerate 

networks

HLS

Compiler

Extract parameters

and resultant 

resources/latency from 

each layer

Dataset:

5,962 unique dense

496 unique LSTM

4,195 unique convolutional

11,851

Random Forest Model:
latency, resources = f(layer type, input 

tensor size, weight tensor size, reuse factor)

For a given layer, the models can be 

linearized around the reuse factor

12 FCCM 2025

hls4ml

* Amenable to ILP



COST/PERFORMANCE MODEL TEST ACCURACY

R2 = 1 −
σ 𝑦𝑖 − ෝ𝑦𝑖

2

σ 𝑦𝑖 − 𝜇 2
FCCM 202513

[1] C. Hao et al, "High-level Synthesis Performance Prediction using GNNs: Benchmarking, modeling, and advancing," DAC22.

• Data-driven HLS p/c models in the 

literature achieve [1]:

• DSP: 9% to 15% MAPE

• LUT: 4% to 26% MAPE
• FF: 6% to 26% MAPE

• Latency: 4% MAPE



N-TORC DESIGN FLOW

Step 1: Train DROPBEAR Models

Multi-objective Bayesian optimization 

Pareto optimal models

Step 2:

For each use integer linear solver (Gurobi) to 

solve reuse factor for each layer to constrain 

latency to 200 s and minimize resources

RF=?

conv conv LSTM dense dense

RF=? RF=? RF=? RF=?

FCCM 202514
(based on linearized RF models)

• Input: dataset (e.g. DROPBEAR)

• Output: set of latency constrained, Pareto optimal 

model deployments (accuracy/cost)



TRAINING AND DEPLOYMENT RESULTS FOR 
PARETO OPTIMAL NETWORKS 
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ILP VS STOCHASTIC SEARCH
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• Random Walk and Simulated Annealing:
• Same linear cost and performance models

• Same latency constraint and resource minimization

• Two different DROPBEAR networks

• 1K to 1M iterations

Random Walk Simulated Annealing ILP



CONCLUSIONS AND FUTURE WORK

• N-TORC combines hyperparameter search with architecture 
optimization

• Designed for high-rate (real-time) machine learning

• Limited to small models due to on-chip memory constraints

• Future work:
• Move to alternative backend that supports dataflow with off-chip 

memory access (e.g. InTAR)

• Incorporate quantization into optimizer and cost/performance models

FCCM 202517



THANK YOU!
Q&A
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