
N-TORC:
NATIVE TENSOR OPTIMIZER

FOR REAL-TIME CONSTRAINTS

David Andrews

Miaoqing Huang

This material is based upon work supported by the National Science Foundation under Grant No. 1956071.

Suyash Vardhan Singh*

Iftakhar Ahmad*

Austin R.J. Downey

Jason D. Bakos

1

*student authors

OBJECTIVE
• HW/SW stack for High-Rate Machine Learning (HRML) applications:

• Associated with a cyber physical system

• Inference at KHz/MHz rates

• Have real-time latency constraint of
1

𝑟𝑎𝑡𝑒
 (s/ns)

• Embedded platform: minimal resources needed for a particular accuracy

𝑇𝑠 𝑇𝑠 𝑇𝑠 𝑇𝑠

FCCM 20252

Applications:
Intelligent airbags, blast mitigation, active vibration dampening, etc.

DROPBEAR
• Dynamic Reproduction of Projectiles in Ballistic Environments for

Advanced Research

• Developed by AFRL at Eglin AFB

Input Signal: Acceleration

Output Signal: Roller Position

accelerometerbeamroller

FCCM 20253

DROPBEAR DATASET

• Sample rate: 5 KHz
• 𝑇𝑠 = 200 𝜇𝑠

• 150 experimental runs

• 3 categories of roller
behavior

random index sets slow positional index sets standard index sets

Repo:

FCCM 20254

MODEL DEPLOYMENT

n most recent

samples

nc convolution

blocks

c1, c2, …, cnc

output channels

nl LSTM cells

l1, l2, …, lnl

units

nl dense

layers

d1, d2, …, dnl

neurons

pin position

• Dataflow approach (hls4ml/FINN):

• Allocate dedicated systolic array for each layer

• # multipliers = 𝑏𝑙𝑜𝑐𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑀𝑉𝑀 𝑠𝑖𝑧𝑒

𝑟𝑒𝑢𝑠𝑒 𝑓𝑎𝑐𝑡𝑜𝑟

• All weight tensors stored in on-chip ROMs

• Outputs transferred via FIFOs

• "Traditional" overlay approach (TPU, VTA, Gemmini):

• One systolic array shared by all layers

• Weights, inputs, and outputs exchanged with off-chip memory

RAM

R
A

M

RAM

DRAM

head

dense1 or

dense256

FCCM 20255

F
IF

O

ROM

ROM

ROM

Layer 1 Layer 2 Layer 3

F
IF

O

F
IF

O

EXAMPLE MODEL

• hls4ml:

• 1.4 x 1010 valid
reuse factor
permutations

With RFs shown:

• 177 total multipliers

• Latency = 12250 cycles (49 s @ 250 MHz)

• 230K LUT (94%), 298 BRAM (47%) (on ZCU104)

FCCM 20256

conv16
397x3x16

conv16
199x48x16

conv16
100x48x64

conv16
51x48x16

conv16
26x48x16

dense76
192x76x1

dense76
76x76x1

395,1 197,16

dense76
76x76x1

98,16 49,16 24,16

12,16 1,76 1,76 dense76
76x76x1

1,76 dense1
76x1x1

1,76 1

4x4 4x4 4x4 4x4

768 304 1444 304

4x4

19

RF->
sys. array ->

3 48 48 48 48

19x1 19x2 4x2 19x2 4x2sys. array ->
RF->

EXAMPLE MODEL

• hls4ml:

• 31 total multipliers

• Latency = 54K cycles (216 s @ 250 MHz)

• 174K (-56K) LUTs, 279 (-19) BRAMs

• MAESTRO systolic array overlay:

• 16x16 systolic array

• 256 KB weight buffer/128 KB output buffer

• 4 word/cycle off-chip memory bandwidth

• Latency = 221K cycles (884 s @ 250 MHz)

conv16
397x3x16

conv16
199x48x16

conv16
100x48x64

conv16
51x48x16

conv16
26x48x16

dense76
192x76x1

dense76
76x76x1

395,1 197,16

dense76
76x76x1

98,16 49,16 24,16

12,16 76 76 dense76
76x76x1

76 dense1
76x1x1

76 1

2x1 2x2 2x2 2x2

14592 5776 5776 5776

1x1

76

RF->
sys. array ->

24 192 192 192 768

2x1 2x2 2x2 2x2 2x1sys. array ->
RF->

FCCM 20257

N-TORC: AUTOMATIC DESIGN DEPLOYMENT

FCCM 20258

Training data

i.e. DROPBEAR

Target

sample rate

Set of HW deployed models:

1. Meets latency constraint

2. Minimal cost for its

accuracy (Pareto optimal)

NEED:

1. Cost/performance models for individual hls4ml layers

2. Method to optimize the reuse factor of each layer to meet constraint and minimize cost

3. Method to generate a set of optimal DROPBEAR models w.r.t. accuracy and cost

COST/PERFORMANCE MODEL

FCCM 20259

layer

type

input tensor

size

weight

tensor size

reuse

factor

LUTs

FFs

BRAMs

DSPs
latency

layer

cost/

performance

model

• Cost/performance prediction for HLS is an open problem

• N-TORC advantage: restricted parameter space

HLS4ML PERFORMANCE MODEL

n_out = # output channels n_out = # units x 4 n_in = # inputs

FCCM 202510

log2(block factor)

block factor = #multipliers

log2(block factor)

block factor = #multipliers
log2(block factor)

block factor = #multipliers

HLS4ML PERFORMANCE MODEL

n_in = # inputs

FCCM 202511

HLS4ML COST/PERFORMANCE MODELING

Enumerate

networks

HLS

Compiler

Extract parameters

and resultant

resources/latency from

each layer

Dataset:

5,962 unique dense

496 unique LSTM

4,195 unique convolutional

11,851

Random Forest Model:
latency, resources = f(layer type, input

tensor size, weight tensor size, reuse factor)

For a given layer, the models can be

linearized around the reuse factor

12 FCCM 2025

hls4ml

* Amenable to ILP

COST/PERFORMANCE MODEL TEST ACCURACY

R2 = 1 −
σ 𝑦𝑖 − ෝ𝑦𝑖

2

σ 𝑦𝑖 − 𝜇 2
FCCM 202513

[1] C. Hao et al, "High-level Synthesis Performance Prediction using GNNs: Benchmarking, modeling, and advancing," DAC22.

• Data-driven HLS p/c models in the

literature achieve [1]:

• DSP: 9% to 15% MAPE

• LUT: 4% to 26% MAPE
• FF: 6% to 26% MAPE

• Latency: 4% MAPE

N-TORC DESIGN FLOW

Step 1: Train DROPBEAR Models

Multi-objective Bayesian optimization

Pareto optimal models

Step 2:

For each use integer linear solver (Gurobi) to

solve reuse factor for each layer to constrain

latency to 200 s and minimize resources

RF=?

conv conv LSTM dense dense

RF=? RF=? RF=? RF=?

FCCM 202514
(based on linearized RF models)

• Input: dataset (e.g. DROPBEAR)

• Output: set of latency constrained, Pareto optimal

model deployments (accuracy/cost)

TRAINING AND DEPLOYMENT RESULTS FOR
PARETO OPTIMAL NETWORKS

FCCM 202515

ILP VS STOCHASTIC SEARCH

FCCM 202516

• Random Walk and Simulated Annealing:
• Same linear cost and performance models

• Same latency constraint and resource minimization

• Two different DROPBEAR networks

• 1K to 1M iterations

Random Walk Simulated Annealing ILP

CONCLUSIONS AND FUTURE WORK

• N-TORC combines hyperparameter search with architecture
optimization

• Designed for high-rate (real-time) machine learning

• Limited to small models due to on-chip memory constraints

• Future work:
• Move to alternative backend that supports dataflow with off-chip

memory access (e.g. InTAR)

• Incorporate quantization into optimizer and cost/performance models

FCCM 202517

THANK YOU!
Q&A

	Slide 1: N-TORC: Native Tensor Optimizer for Real-time Constraints
	Slide 2: Objective
	Slide 3: DROPBEAR
	Slide 4: DROPBEAR Dataset
	Slide 5: Model Deployment
	Slide 6: Example Model
	Slide 7: Example Model
	Slide 8: N-TORC: Automatic Design Deployment
	Slide 9: Cost/Performance Model
	Slide 10: hls4ml Performance Model
	Slide 11: hls4ml Performance Model
	Slide 12: hls4ml Cost/Performance Modeling
	Slide 13: Cost/Performance Model Test Accuracy
	Slide 14: N-TORC Design Flow
	Slide 15: Training and deployment results for pareto optimal networks
	Slide 16: ILP vs Stochastic Search
	Slide 17: Conclusions and Future Work
	Slide 18: Thank you! Q&A

