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PCB faillure mechanisms under shock
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PCB failures under shock are caused by:

« Bending of the base PCB board, causing stresses to
build up at the solder balls.
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Long short-term memory state estimators

Type of recurrent neural networks

Using feedback to pass state |nformat|on to future timesteps U(met xd Ufht—l o bf)
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Experimental system
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Experimental system
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Experimental procedure
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Experimental procedure

Dataset encompasses 30 impacts
Shock amplitude of over 10,000 g,
Average half-sine time of 32 s
PCB resonance 4000 Hz
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Validation and feature extraction

Table 1 Time-domain features
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Model development

Long short-term memory (LSTM) models are used for real-
time state estimation.

Models are initially trained offline on pre-recorded data.

LSTM architecture is (50, 50 units) with a dense layer at the W U, U,
output with SoftMax activation ho % 1 113
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Model deployment

hardware repro-
ducing signals

A real-time system demonstrates an end-to-end

prediction system. control

computer § - . : =

Signal reproduction is isolated from real-time system
performing signal acquisition, state updating, and
health estimation.

Health estimates are communicated back to the host real-time target running LSTM

computer.
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Model performance

prediction of survivability of PCB exposed to shock loads
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Model performance

prediction of survivability of PCB exposed to shock loads
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FPGA implementation T
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Timing and resource utilization

FPGA
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Future work

« Multi-connection impedance measurement - PCB ccinnection_
» Reduce latency and maximize model performance Internal connections
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Dataset Layout

https://github.com/High-Rate-SHM-Working-Group/Dataset-5-Extended-Impact-
Testing/tree/main/data/dataset-2
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