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ABSTRACT
Electronic components that undergo shock and vibration are

susceptible to failure caused by damage in the base printed circuit
board that makes up the substrate of these systems. In certain ap-
plications, it may become paramount to know in real-time if the
electronic components are damaged to enable a next-generation
active system to take immediate responses. Broad examples of
such systems include blast mitigation systems or safety systems
in car accidents. These systems on classified under the term
“high-rate” as they experience high shock levels on short time
scales. This work proposes a long short-term memory neural
network to enable real-time damage detection and assessment of
electronic assemblies subjected to shock. The long short-term
memory neural network is able to infer the state of the struc-
ture in approximately 4 milliseconds following the impact. The
model obtains perfect classification results at 4 milliseconds for
the data used in this work. This work is supported by experi-

mentation that indicates damage to electronic packages can be
quantified through the in situ monitoring of the impedance of
electrical connections. Changes in impedance correlate to alter-
ations in the physical properties of electronic components which
indicate the occurrence of damage. On this basis, a comprehen-
sive dataset is created to monitor the impedance changes of a
daisy-chained connection through repeated high-energy shocks.
Meanwhile, the shock response of the electronic components is
captured using an accelerometer, enabling a detailed analysis of
the effects of high-rate shock on the components’ performance.
A dataset is developed to encompass 30 repeated impacts expe-
riencing 10,000 gn during impact with an average half-sine time
of 322 microseconds. The paper outlines the proposed real-time
machine learning framework while performance metrics are pre-
sented and discussed in detail.
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INTRODUCTION
Electronics experiencing high-rate dynamic events, such as

shock, can lead to adverse effects on the internal microstruc-
tures and delicate contacts, ultimately compromising the over-
all performance of electronic systems. Structures that experi-
ence shock loads leading to accelerations exceeding 100 Gs in
under 100 milliseconds fall under the category of high-rate dy-
namics [1]. The technical field of high-rate structural state esti-
mation is foundational for creating high-speed control systems
for context-aware control systems experiencing high levels of
shock [1, 2]. Context-aware real-time control of active struc-
tures could be leveraged for next-generation orbital infrastruc-
ture, hypersonic vehicles, systems designed to penetrate hard-
ened targets, and blast mitigation mechanisms, which all function
within environments characterized by high-rate dynamics [2].
The highly variable and uncertain conditions of these environ-
ments necessitate updating the estimated state of these systems
in less than a millisecond. By reducing the delay in state estima-
tion processes, next-generation context-aware control schemes
can achieve quicker reaction times, which are vital for the effi-
ciency of control mechanisms operating at high rates.

Potential failures in electronic components resulting from
shock and vibration can be classified into solder-joint failures,
pad cratering, chip-cracking, copper trace fracture, and underfill
fillet failure [3]. There is a direct correlation between the du-
ration of shock loading and the resulting damage to electronic
components [4]. Studies present a wide range of approaches to
quantify induced damage in electronic components under vibra-
tion and shock loading [5]. Hardware solutions such as damping
putty and shock-resistant packaging are also found to be effective
in reducing the transmissibility of shocks and oscillations to del-
icate electronic components, further providing physical protec-
tion [6]. The paper by Liu et al. [7] investigates the deformation
and stress distribution of printed circuit boards (PCBs) with vary-
ing thicknesses and materials under shock loading conditions.
This study provides valuable insights for designing PCBs with
enhanced durability and reliability for applications in harsh en-
vironments, suggesting that both thickness and material compo-
sition are crucial factors for optimizing PCB performance under
shock loading. Vibration control systems have also been stud-
ied for mitigating the damage caused by shock and vibrations.
For example, Esser and Huston demonstrated mass damping of
electronic circuit boards [8]. Active damping using strategically
placed piezoelectric force transducers has been demonstrated.
For example, Chomette et al. used active modal damping, instead
of the traditional isolation approach to obtain a damage reduction
factor within the second mode of 255 [9]. Software-based error
handling algorithms within the system that are held by the PCB
(i.e. the computer) are, in theory, capable of detecting and mit-
igating anomalies caused by vibration-induced noise, ensuring
data integrity and minimizing the impact of disturbances.

This study explores the feasibility of real-time damage de-
tection in electronic components during impact events through
online high-rate structural health monitoring. It involves predict-
ing the damage state of a given system as a shock event occurs,
based on the temporal response of the system. To support this
investigation, a dataset was created featuring a ball grid array
chip subjected to repeated shocks. This dataset captures both the
signal integrity, as measured by impedance, and the acceleration
responses to these shocks. A model employing long short-term
memory (LSTM) neural networks was developed to distinguish
between damaged and undamaged chips. This model success-
fully identified the health status of the chips solely from their
acceleration responses, showcasing the effectiveness of online
high-rate damage detection algorithms. Both the dataset and the
training approach are made publically available [10, 11].

The contributions of this work are two-fold. First, a data-
driven methodology for training an online state estimating algo-
rithm using LSTM networks is proposed. Second, a dataset of
electronic components subjected to repeated high-energy shock
is provided. This dataset serves as a valuable resource for re-
searchers and engineers in the field of fault detection and mitiga-
tion. This methodology enables the prediction of the health state
of electronic circuits, enhancing their survivability when exposed
to high-rate dynamic events.

METHODOLOGY
This section explains the experimental setup and machine

learning model developed for this work

Experimental setup
Preliminary investigations have indicated that damage to

electronic contacts can be quantified through the in situ monitor-
ing of the impedance of the electric connections. It is assumed
that changes in impedance correlate to alterations in the physical
properties of electronic components which can indicate the oc-
currence of damage. On this basis, a comprehensive dataset was
created to monitor the impedance changes following repeated
high-energy shocks. Figure 1 shows the electronic component
used in this work whereas Figure 1(a) details the connections of
the printed circuit board (PCB) and chip circuit. A ball grid array
(CABGA_36 from Amkor Technology) is arranged with a daisy-
chain connection attached through the PCB and chip at multiple
points. The daisy-chained array was designed to maximize the
potential of solder-joint failures which can be detected using a
single impedance measurement. As shown in Figure 1(b), the
dataset also captures the shock response of the electronic com-
ponents using two accelerometer sensors, one mounted to the
shock mass and another attached to the PCB. The shock mass
acceleration is taken to be the input acceleration signal and the
PCB acceleration is taken to be the response acceleration signal.
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FIGURE 1. Experimental setup comprising of two parts: (a) a circuit diagram illustrating the impedance measurement from a daisy-chained ball grid
electronic chip, and (b) the shock test configuration with labeled key components.

FIGURE 2. The shock test system, as well as impedance data acquisition, with key components annotated.

This setup enables a detailed analysis of the effects of high-rate
dynamic environments on the components’ performance.

Figure 2 shows the shock test system experimental setup
where the PCB sample is the test component shown in fig-
ure 1(b). The PCB sample was subjected to 30 repeated impacts
with an average maximum acceleration of 39046 m/s2 and an
average half-sine time of 322 µs. Figure 3 shows the time and
frequency domain responses of a single impact. As can be seen
in figure 3(b), the modal resonance of the PCB is around 4000
Hz.

The development of the experimental setup is motivated by
the intuition that alterations to the geometry of the ball grid chip
due to damage can be quantified by measuring impedance. When
examining the magnitude of impedance in figure 4(a), a large

drop occurred after 10 impacts. It’s assumed that change in elec-
trical impedance is due to a failure in the ball grid chip (i.e. sol-
der, die, packaging). To support the assumption, various time
and frequency domain metrics were obtained for the time-series
acceleration data acquired from the PCB-mounted accelerome-
ter for each impact test. The metrics used in this work have been
found to be applicable to the high-rate challenge [12]. The re-
sults are presented in terms of percent deviation in figure 4(b)
which shows that most metrics drift away from the initial value
during testing. This seemed to indicate that structural damage
in the PCB occurred continuously with each impact. This is in
contrast with the impedance data that indicates damage in the
electrical connections manifests itself only after impact 11. The
acceleration response metrics indicate that the first ten impacts
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FIGURE 3. Shock response of the PCB experimental setup including (a) time domain, and (b) frequency domain response.

FIGURE 4. Preliminary experimental results with (a) impedance measurements, and (b) features extracted from the shock response of the ball grid
chip conducted over 30 impacts.

are self-similar and so were categorized as healthy. Then, the fi-
nal ten impacts were taken to represent an unhealthy chip, with
the middle ten impacts being discarded as an equal number of
labeled healthy and damaged datasets were desired. Moreover,

discarding the middle third of impacts, we hoped to produce a
clear demarcation between healthy and unhealthy responses.
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FIGURE 5. Online health state estimator taking in accelerometer signal and predicting the health of electronic components.

Model development
Recurrent neural networks (RNNs) are a class of neural net-

works which process time-sequence data. Computation occurs at
each timestep, where the RNN transforms an input vector and a
state vector into an output vector and updated state vector. Long
short-term memory (LSTM) networks are a type of recurrent
neural network that excel in modeling sequential data and are
well-suited for time-series analysis. Equations 1-6 show the for-
ward pass calculations of an LSTM cell for one timestep. Here,
ct and ht are the state vectors and ht is returned as the output
vector.

ft = σ
(
Wf xt +U f ht−1 +b f

)
(1)

it = σ (Wixt +Uiht−1 +bi) (2)

ot = σ (Woxt +Uoht−1 +bo) (3)

c̃t = tanh(Wcxt +Ucht−1 +bc) (4)

ct = ft ◦ ct−1 + it ◦ c̃t (5)

ht = ot ◦ tanh(ct) (6)

An LSTM layer outputs a vector with units dimensionality,
where units controls the size and shape of the vectors and weight
matrices, and roughly measures the complexity of the layer.

In this work, an LSTM model is developed to estimate the
electric component’s health and trained using a supervised learn-
ing procedure. Training is done offline and optimized using the
backpropagation through time (BPTT) algorithm, which solves
the effects of recurrence in the error gradient of the model’s
weights. Figure 5 shows the architecture of the model used in this
paper. Two stacked LSTM layers with 50 units perform the re-
current computation. The dense layer after the final LSTM layer
transforms the output of the LSTM layer into a two-element vec-
tor with each element corresponding to a predicted health state.
The SoftMax activation function of the dense layer scales ele-
ments of the output to be positive and sum to one. The output
can be taken as the model’s certainty of the health state. For
online prediction updating, the LSTM model takes the accelera-
tion time series data as input and produces a health state estimate
for each timestep as indicated in Figure 5. The training was per-
formed as a sequence-to-sequence problem. The training process
incentivizes the model to develop a rapid prediction of the chip’s
health state and update this prediction as more information is re-
vealed through the signal. Training used the Adam optimizer
with learning rate 1e−6, β1 = 0.9, and β2 = 0.99. Training oc-
curs over 1000 epochs, with all tests computed in one batch, so
that weight updating occurs once per epoch.

Results
Figure 6 shows the input and resulting model output for one

impact in the undamaged set and one in the damaged set. In
subfigure (a), the acceleration response data are overlaid to show
the difference between the two signals. As shown in subfigure
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FIGURE 6. Data of a healthy and damaged drop test showing: (a) impact acceleration; and; (b) model estimation through the impact.

FIGURE 7. Confusion matrix indicating perfect classification of the
model.

(b), the model prediction follows the same profile until the im-
pact occurs at 5 ms. From 800 µs after the impact, the model
predictions have differentiated and correctly predicted the health
state. Throughout the rest of the impact, the model predictions
gain certainty and then plateau after reaching high certainty.

For purposes of the analysis, we take the greater state predic-
tion at 4 ms after impact as the model’s classification prediction.
As shown in figure 7, the model perfectly classifies all impacts
in the dataset. These results indicate that the approach developed
in this paper can achieve high accuracy in classifying the health
state of electronic components.

CONCLUSION
This paper investigated the proposed LSTM-based network

for making online inferences about the health of the electronic
system during impact. An LSTM-based network was developed
to infer the health state from the component’s response during
impact. The contributions of this work are two-fold. First,
a dataset of electronic components subjected to repeated high-
energy shock is provided. This dataset serves as a valuable re-
source for researchers and engineers in the field of fault detection
and mitigation. Second, a data-driven methodology for train-
ing an online state estimating algorithm using LSTM networks
is proposed. This methodology enables the prediction of the
health of electronic circuits under repeated shock, enhancing the
survivability of electronic systems exposed to high-rate dynamic
events.
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