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ABSTRACT

Effective vibration suppression is vital to ensure the struc-
tural integrity of dynamically loaded systems in aerospace, au-
tomotive, and manufacturing systems. High-rate dynamic dis-
turbances, such as shocks, impacts, and rapid load changes,
produce short-duration, large-magnitude responses that over-
whelm conventional damping approaches. Transient dynamics
are characterized by non-stationary behavior, model uncertainty,
and random variability of external forces, requiring control sys-
tems to respond quickly with flexibility. While passive damping
systems are very effective in steady-state regimes, they lack re-
sponsiveness to handle impulsive disturbances. Active vibration
control, on the other hand, offers real-time adjustability in the
form of feedback mechanisms to alter structural response on sub-
millisecond timescales. In this paper, a model built using the
finite element method (FEM) of an impulse-loaded fixed-fixed
beam is developed to approximate experimental conditions rep-
resentative of shock-excited printed circuit boards subjected to
drop tower impact. The beam is modeled using a modified Euler-
Bernoulli beam theory, where axial degrees of freedom are incor-
porated alongside conventional transverse and rotational DOFs
at each node. This extension enables the simulation of axial
loading effects arising from actuator forces, which are axially ap-
plied in real-world implementations to induce bending moments.
Surface-mounted control actuators are introduced as in-plane
force inputs that generate localized moment effects, thereby emu-
lating the behavior of piezoelectric bending actuators. While no
direct axial forces are applied as part of the control strategy, the
model captures the resulting axial stress distributions and associ-
ated geometric stiffening effects implicitly through its structural
formulation, while Rayleigh damping and Newmark-Beta time
integration schemes are used to simulate transient dynamics. A
mesh convergence test confirms model validity under steady-state
conditions, and time-domain simulations demonstrate vibration
reduction through moment-based actuation. The focus of the
work is the enhancement of FEM formulation to accurately de-
scribe beam response under dynamic loading and the creation

of a computational foundation for evaluating active control tech-
niques. Simulations demonstrate notable reductions in peak dis-
placement and settling time when control forces are activated.
This study lays the groundwork for robust, simulation-driven vi-
bration control in high-rate dynamic environments.

Keywords: vibration control, finite element modeling, struc-
tural dynamics, active damping, machine learning

1. INTRODUCTION

High-rate dynamic environments, such as those encountered
in aerospace, defense, and advanced manufacturing systems, sub-
ject structures to shock loads and high-G events occurring over
extremely short durations, often in the microsecond to millisec-
ond range. These conditions result in large stress gradients,
abrupt deformations, and limited time for mitigation, posing a
significant challenge for conventional control and monitoring
systems. Passive damping solutions like viscoelastic layers and
tuned mass dampers are generally insufficient in these regimes
due to their fixed response rates and inability to adapt in real
time [1]. Effective mitigation under such conditions requires
control strategies capable of extremely fast sensing, computation,
and actuation. As highlighted by Dodson et al. [2], traditional
structural health monitoring frameworks struggle to meet these
demands due to bandwidth constraints and latency in decision-
making processes. Their work emphasizes the need for reduced-
order models, low-latency actuation, and adaptive algorithms that
can function within the brief windows available during high-rate
events. Motivated by these challenges, the present study explores
moment-based control using localized rotational actuation, pro-
viding a physically implementable and computationally efficient
mechanism for suppressing vibrations under extreme transient
conditions.

Active vibration control techniques address the limitations of
passive systems by applying real-time corrective forces, making
them particularly suited for shock loading, where abrupt, high-
magnitude forces over short durations require rapid sensing and
actuation to suppress structural response before damage occurs.
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Among the techniques, the use of smart materials, particularly
piezoelectric actuators, has gained popularity due to their high
electromechanical response and compact size [3]. Piezoelec-
tric actuators generate axial strains under applied electric fields,
and when bonded eccentrically to a structure, these axial strains
manifest as bending moments on the beam. This coupling effect
makes them highly effective for controlling both axial and flexural
vibrations in beam-like structures [4].

To adequately represent such systems in a numerical frame-
work, a high-fidelity finite element model is required. In this
case, a model of the beam using FEM was developed to incorpo-
rate both axial and bending responses within each element. The
stiffness matrix was developed to have contributions from axial
deformation, described via linear Lagrange shape functions, and
bending deformation, described via cubic Hermite function [5].

The FEM framework was developed to simulate the influ-
ence of control actions made by piezoelectric actuators, produc-
ing in-plane actuating forces but manifested as bending forces.
The moments are introduced through the application of opposing
torques at neighboring rotational degrees of freedom, simulat-
ing effectively the eccentric action of a surface-bonded actuator
[6, 7]. The outcome is a control-augmented beam model that can
capture both the distributed mass and stiffness properties of the
structure and the localized nature of actuator inputs.

The model also includes boundary conditions appropriate
to practical mounting arrangements. Specifically, a fixed—fixed
beam arrangement was employed to represent structural con-
straints common in embedded systems, circuit boards, aerospace
panels, and mechanical subassemblies [8]. These constraints
largely dictate natural frequencies and mode shapes, and thus
their accurate representation is key to predictive modeling and
control synthesis [9].

This study introduces a simulation-based framework for ac-
tive vibration control of fixed-fixed beams under shock loading
using moment-based actuation. The finite element model incor-
porates rotational degrees of freedom to apply control moments,
mimicking the mechanical behavior of surface-mounted piezo-
electric devices. A curvature-sensitive PID controller is em-
bedded directly into the time-domain solver to enable real-time
suppression of transient oscillations. Example codes associated
with this work are available through a public repository [10].
The contributions of this work are twofold. First, it presents a
finite element implementation of moment-based actuation via ro-
tational DOFs for realistic modeling of piezoelectric-like control.
Second, it demonstrates a real-time PID control strategy tailored
for high-rate shock environments. The framework is validated
through both static and dynamic benchmarks on a beam repre-
sentative of FR4 circuit boards, laying the groundwork for future
experimental and data-driven control development.

2. BACKGROUND

This work builds on recent experimental studies that char-
acterize the response of electronic assemblies to high-rate shock
loading, particularly in the context of structural health monitor-
ing and active control. Printed circuit boards (PCBs) constructed
from FR4 composite have been used in drop tower experiments
to simulate the effects of impulsive loads in constrained geome-

FIGURE 1: REPRESENTATIVE FR4 PCB BEAM: (A) TOP VIEW, (B)
BOTTOM VIEW, AND (C) FIXED-FIXED MOUNTING ARRANGEMENT
USED IN DROP TOWER TESTING.
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FIGURE 2: DROP TOWER SYSTEM USED TO APPLY VERTICAL IM-
PULSIVE LOADS TO PCB TEST STRUCTURES WITH KEY COMPO-
NENTS ANNOTATED.

tries. As shown in Figures 1 and 2, test configurations typically
employ fixed—fixed boundary conditions with controlled vertical
impacts to replicate shock-like mechanical environments. These
setups provide a repeatable platform for evaluating embedded
sensing and actuation strategies under high-G excitation. Yount
et al. [11] demonstrated the utility of this testbed for vibration-
based damage detection using onboard signal processing and
frequency tracking. Complementary to this, Roberts et al. [9]
employed finite element modeling to match experimental condi-
tions and investigate actuator placement and control strategies for
suppressing transient deformation. The present study adopts a
similar beam configuration and material assumptions to emulate
these physical conditions in simulation, enabling the investigation
of curvature-sensitive control laws and moment-based actuation
for shock mitigation.
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TABLE 1: SIMULATED BEAM GEOMETRY AND MATERIAL PROP-
ERTIES APPROXIMATING FR4 PCB.

width thickness length
2540mm  1.60 mm  88.90 mm
density Young’s modulus

1900 kg/m3 18.60 GPa

3. METHODOLOGY

This study develops a finite element model to simulate the
dynamic behavior of a fixed-fixed beam subjected to shock load-
ing. The model captures both axial and transverse dynamics
and integrates moment-based actuation to reflect the behavior of
surface-mounted control devices such as piezoelectric patches.
These capabilities enable the beam model to replicate realistic
conditions in structural systems subjected to shock loads, such
as in aerospace, electronics, or mechanical structures [5, 12]. In
particular, the simulated beam geometry and material properties
were selected to approximate a 175 Tg FR4 composite PCB, a
widely used substrate material in electronics. The simulated beam
is discretized into 50 nodes with 49 finite elements, each possess-
ing axial, vertical, and rotational degrees of freedom. Table 1
summarizes the updated material and geometric parameters.

3.1. Finite Element Formulation

The finite element model employs a one-dimensional (1D)
Euler-Bernoulli beam formulation capable of capturing axial,
transverse, and rotational effects, which are critical in systems
utilizing piezoelectric actuators. These actuators typically ap-
ply axial forces, which, due to their placement, generate bending
moments that contribute to vibration suppression. The beam’s
displacement is approximated using shape functions, and the re-
sulting stiffness and mass matrices are computed for each element.
Although the beam is modeled with degrees of freedom in both the
axial and transverse directions, it remains a 1D Euler-Bernoulli
beam formulation. Each node is assigned three degrees of free-
dom: axial displacement, vertical displacement, and rotation.
This configuration enables the simulation of two-dimensional
(2D) structural behavior while maintaining computational effi-
ciency associated with 1D elements.

To accurately model real-world systems, the finite element
model was updated to include the coupling between axial forces
and bending behavior. Axial stiffness influences the overall beam
dynamics, which, in combination with bending stiffness, impacts
the system’s response under dynamic loads. In-plane control
forces, applied through piezoelectric actuators (modeled as mo-
ments), were incorporated to better simulate the effect of these
actuators, which are commonly used in practical applications to
suppress vibrations [13].

The governing equation for the beam, considering both axial
and bending forces, in its strong form is expressed as:

8*w 8w 8w
EIW(X’I)+Nﬁ(x’t)+pAW(x’t):0’ (1)

FIGURE 3: AN ILLUSTRATION DEPICTING THE FREE BODY DIA-
GRAM OF A FIXED-FIXED BEAM SUBJECTED TO A TRANSVERSE
POINT LOAD.

where w(x, t) is the transverse displacement, E is Young’s modu-
lus, I is the beam’s moment of inertia, NV is the axial force, p is the
material density, and A is the beam’s cross-sectional area. This
equation governs the behavior of the beam and is solved numer-
ically using the FEM to approximate the displacement, velocity,
and acceleration at each node along the beam.

Figure 3 depicts the modeled beam, which is fixed at both
ends and loaded transversely at its center by a point force P, also
termed Fimpact, resulting in internal axial forces Na, Np, bending
moments My, Mg, and vertical reaction forces Fyu, Fp.

In the FEM, the displacement field w(x,?) of the beam is
approximated as a sum of shape functions ¢;(x) multiplied by
time-dependent nodal values w;(f). The displacement at any
point along the beam is given by:

W(x,t) _ M(X, l)} _ i [Mj(l‘) ¢j(x) @

wie)| = L w0 uy )]

where ¢;(x) and y;(x) are the shape functions associated with
axial and transverse displacements, respectively. These shape
functions define how displacement varies spatially within each
finite element, ensuring appropriate continuity and interpolation
between nodes. The coefficients u;(f) and w;(f) represent the
nodal degrees of freedom, which are the values of axial and
transverse displacement at the finite element nodes as functions
of time. This formulation allows the continuous displacement
field of the beam to be approximated by a finite set of time-
dependent variables.

For an element of length /, the shape functions and corre-
sponding nodal degrees of freedom are defined as:

T
We=[ur wi 61 wy wy 6], (3)

where u1, up are axial displacements, wy, w, are vertical displace-
ments, and 61, 6, are rotational displacements at the two element
nodes. These degrees of freedom and their physical interpretation
are illustrated in Figure 4. The inclusion of rotational degrees
of freedom is essential for Euler-Bernoulli beam elements, as
it allows the model to represent curvature continuity and apply
bending moments. In this study, these DOFs enable the simula-
tion of moment-based actuation by applying torques directly to
node rotations.

For each beam element, both a stiffness matrix and a mass
matrix are assembled to model its structural behavior under load-
ing. The stiffness matrix captures the element’s resistance to
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FIGURE 4: AN ILLUSTRATION DEPICTING THE DEGREES OF
FREEDOM AND INTERNAL FORCES FOR A 1D BEAM FINITE EL-
EMENT.

deformation due to both axial and bending effects. The displace-
ment vector for each element is defined W; (eq. 3).The element
stiffness matrix is formed by summing the contributions from
axial and bending responses:

h h

Kl.(;) = L EA ¢ (x)}(x) dx + L ELy! ()¢ (x)dx, (4)
where ¢; (x) are the linear Lagrange shape functions used for axial
deformation and ; (x) are the cubic Hermite shape functions used
for bending deformation. Both shape functions are defined over
the reference coordinate & = x/h € [0, 1]. The Hermite shape
functions ensure C' continuity of the transverse displacement
field, which is essential for satisfying the continuity of slope and
bending moment across element boundaries in Euler-Bernoulli
beam theory [14].

The element mass matrix accounts for the inertia associated
with both axial and transverse motion. A consistent mass matrix
formulation is employed here, which arises directly from integrat-
ing the shape functions and preserves dynamic coupling. This
approach ensures more accurate inertia representation, especially
under high-rate loading, compared to lumped mass approxima-
tions [15]. It is computed by integrating the shape functions over
the element length:

h h
Mi(;) = Jo PA @i (x)dj(x) dx + Jo PAY (X)yj(x)dx. (5)
These matrices are assembled globally for the entire beam, rep-
resenting the full dynamic system.

Boundary conditions are applied to simulate a fixed-fixed
beam, where the displacement and rotation at both ends are
constrained (as shown in Figure 1). This approach enforces
Dirichlet boundary conditions by zeroing the corresponding rows
and columns in the global matrices and setting the diagonal to
unity [16]. An example of the beam discretization and boundary
constraints is illustrated in Figure 5.

The beam’s equation of motion is discretized to approxi-
mate the system’s dynamic behavior. The discretized equation of
motion is expressed as:

MW +CW + KW = F(1), (6)

where M is the mass matrix, C is the damping matrix, K is the
stiffness matrix, and F'(¢) represents the applied external forces.
The total external force vector is defined as:

F(t) = Fimpacl(t) + Fcontrol(t)7 (7N

ny ny ny Ny ns n,
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FIGURE 5: AN ILLUSTRATION DEPICTING THE DISCRETIZATION
OF THE FIXED-FIXED BEAM.

where Fimpac[(t) represents an externally applied disturbance, and
Feontro1 (2) 1is the time-varying actuation computed by the con-
troller.Both simulations used identical loading conditions: a 30 N
rectangular force applied vertically at the midpoint node for 0.1
milliseconds, beginning at # = 0.005 seconds. This profile mim-
ics a short-duration shock load, as encountered in drop testing or
blast scenarios [17].

The damping matrix C was constructed using the Rayleigh
damping model, which expresses damping as a linear combina-
tion of the mass and stiffness matrices:

C =aM + BK, ®)

where @ and § are the mass and stiffness proportional damping
coeflicients, respectively. These coefficients were computed to
yield a 2% critical damping ratio for the first two natural fre-
quencies of the beam. The undamped modal frequencies were
obtained from eigenvalue analysis of the reduced stiffness and
mass matrices, and the values of @ = 65.53 and 8 = 3.95 X 1076
were calculated to yield a 2% critical damping ratio for the first
two natural frequencies. This was done by solving a system of two
equations that relate the modal damping ratio to the Rayleigh pa-
rameters and the corresponding modal frequencies. This method
provides a practical approximation commonly used in structural
dynamics, as it maintains low damping in higher modes while
introducing modal energy dissipation in the dominant vibration
modes [12, 18].

To integrate the system’s behavior over time, the Newmark-
Beta time integration method is employed. This method provides
a stable numerical solution for dynamic systems. The time inte-
gration is defined as:

. 1.
iWH=WfHWN+EWAﬂ 9)

where At is the time step, and W,,, W,, and W,, are the displace-
ment, velocity, and acceleration at the current time step n. Using
this approach, the system is updated according to the following
equation:
K+ 2 Ct MW =F i 10
+ ’@ + W n+1 = Fpe1 + previous terms.  (10)
where y = 0.5, 8 = 0.25, and Ar = 0.1 milliseconds are the
standard Newmark parameters. This implicit time integration
scheme ensures numerical stability and allows accurate prediction
of the beam’s transient response at each time step, taking into
account the system’s inertia, damping, and stiffness.
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FIGURE 6: AN ILLUSTRATION DEPICTING THE CONTROL FORCE
AND GENERATED MOMENTS APPLIED AT THE CONTROL NODE.

3.2. Control Implementation

This study simulates the effect of active bending moment
actuation, motivated by the mechanical influence of piezoelectric
patches bonded to the upper and lower surfaces of a beam. While
the electromechanical behavior of such actuators is fundamen-
tally three-dimensional, their primary mechanical contribution—
imposing opposing torques due to off-midline placement—can
be effectively approximated in a one-dimensional finite element
model by applying a discrete moment couple at adjacent beam
nodes.

In this implementation, each actuator is centered between
two nodes along the beam. Rather than applying axial forces,
the control force Fiontol computed by the controller is converted
into an equivalent moment couple and applied directly to the
rotational degrees of freedom at the selected control nodes. The
resulting moment is calculated as:

h
Meontror = Feontrol * Ev (11)

where £ is the thickness of the beam, and //2 is the vertical offset
between the actuator and the beam’s mid-line. This expression
reflects the moment generated by a force couple acting through
an arm equal to half the beam thickness. This formulation arises
from treating the actuator force as a couple acting over a lever arm
equal to half the beam thickness, consistent with the behavior of
symmetric piezoelectric patches on top and bottom surfaces [19,
20].

The torque Mconurol is applied as equal and opposite moments
at the two adjacent nodes spanning the actuator. This generates a
localized bending effect consistent with the physical behavior of
real actuators. The value of Fonyo) 1S updated at each time step
by an external control algorithm, which determines the required
actuation based on the beam’s dynamic state (e.g., displacement,
velocity, or acceleration). This control force is not derived in-
trinsically from the finite element model but is instead treated as
an external input applied to the system. Within the FEM context,
only the in situ application of the force is considered i.e. as a
moment couple at adjacent nodes, and added to the global force
vector at each integration step.

These control moments are assembled into the system’s
global force vector through their contributions to the rotational
degrees of freedom at the control nodes. They are then integrated
into the governing equations of motion (eq. 6) and updated at
each time step using the numerical integration scheme (eq. 10).
Figure 6 illustrates the placement of the control nodes and the
moment application along the beam.

The proportional-integral-derivative controller applies a
time-varying moment couple to the rotational degrees of free-
dom at nodes 16 and 34. These nodes were selected to span
the central region of the beam, where curvature is highest during
midspan deflection. The control law is formulated using feedback
from both the relative rotation and angular velocity between these
nodes:

Meontrol = =K A0 — Kg A6 — K; J A dt, (12)

where A6 = O — 6L is the relative rotation between the right
and left control nodes, and Af = g — 67 is the relative angular
velocity. The final term integrates the curvature difference over
time to accumulate persistent deflection error. The proportional
gain K, = 0.25 was chosen to provide restorative action based on
curvature, while the derivative gain K4 = 5.0x 10~* dampens rel-
ative angular velocity. An integral gain of K; = 0.01 accumulates
curvature error to enhance suppression of low-frequency oscilla-
tions. These gains were selected through a parameter sweep to
minimize peak displacement, settling time, and RMS accelera-
tion. To reduce unnecessary control effort once the beam had
stabilized, a control shutoff mechanism was introduced: if mid-
point displacement remained below 7.5% of the free-response
peak for 5 ms, the control law decayed exponentially. This policy
ensured efficient actuation while maintaining stability.

4. RESULTS

A finite element model of a fixed-fixed beam was used to
simulate its response to impulsive loading, incorporating axial,
transverse, and rotational dynamics. Moment-based actuation
was applied through a proportional-integral-derivative (PID) con-
troller targeting selected rotational degrees of freedom. To val-
idate the model, a mesh convergence study confirmed adequate
spatial resolution, and the conditioning of the integration ma-
trix verified stable time stepping. Static moment loading was
also tested to ensure the actuation method produced physically
consistent curvature. The following results illustrate the model’s
accuracy and the effectiveness of PID control in reducing peak
displacement, settling time, and RMS acceleration under shock
excitation.

4.1. Numerical Validation

To establish the accuracy and numerical reliability of the fi-
nite element model, two verification procedures were performed:
a mesh convergence analysis and an evaluation of the system
conditioning during time integration.

First, a mesh convergence study was performed by analyz-
ing the static response of a fixed-fixed beam subjected to a unit
vertical point load at midspan. The vertical displacement at the
midpoint was computed using finite element meshes ranging from
10 to 100 elements and compared to the analytical solution from
classical Euler-Bernoulli beam theory. As shown in Figure 7, the
relative error in midpoint displacement decreased monotonically
with increasing mesh density. A discretization of 49 elements
(50 nodes) achieved a relative error below 0.1%, indicating ex-
cellent agreement with theory while maintaining computational
efficiency. This level of accuracy supports the use of a 50-node
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FIGURE 7: THE RELATIVE ERROR IN MIDPOINT DISPLACEMENT
VERSUS NUMBER OF ELEMENTS, COMPARED TO THE ANALYTI-
CAL BEAM SOLUTION.
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FIGURE 8: THIS FIGURE SHOWS THE STATIC DEFLECTION FROM
A MOMENT A COUPLE OF —0.5 NM AT NODE 16 AND +0.5 NM AT
NODE 34.

model in dynamic simulations, as further refinement yields di-
minishing returns. The observed convergence trend aligns with
established behavior for Euler-Bernoulli beam elements and con-
firms the adequacy of the spatial discretization [21].

In addition to verifying spatial accuracy, the numerical sta-
bility of the time integration scheme was evaluated by computing
the condition number of the effective stiffness matrix K. used
in the Newmark-Beta method. For the 50-node model, the com-
puted condition number was 3.23 X 108, which, while higher than
typical thresholds, remained acceptable for stable time integra-
tion due to the moderate system size and consistent numerical
performance. In structural dynamics, condition numbers up to
108 can be tolerated in double-precision solvers without signifi-
cant amplification of numerical error, especially when the system
matrix is well-scaled [22]. This confirms that the chosen time
step and integration method provide stable and accurate results
over the simulation window.

4.2. Static Moment-Induced Curvature

A static deflection analysis was conducted to validate the
physical behavior of the finite element model when subjected to
externally applied moment couples, serving as a baseline check to
ensure that localized moments applied at the rotational degrees of
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FIGURE 9: THIS FIGURE SHOWS THE STATIC DEFLECTION FROM
A REVERSED MOMENT COUPLE OF +0.5 NM AT NODE 16 AND
—0.5 NM AT NODE 34.
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FIGURE 10: THE MIDPOINT DISPLACEMENT OVER TIME FOR
BOTH THE FREE AND PID-CONTROLLED CASES.

freedom produce curvature consistent with expected elastic bend-
ing behavior in Euler-Bernoulli beam theory and the intended
actuation scheme used in the dynamic control simulations.

Two equal and opposite moments of 0.5 Nm were applied
at nodes 16 and 34. This magnitude was selected to produce
a noticeable yet linear deformation, allowing curvature to be
visually assessed without introducing nonlinear geometric effects.
The specific node locations were chosen to reflect the same region
used for dynamic control, thereby enabling a direct comparison
between static and active moment effects.

In the first case, a negative moment was applied on the left
and a positive moment on the right. This configuration induced a
downward, concave deflection profile, as shown in Figure 8. The
resulting curvature confirmed that the finite element formulation
correctly interprets moment couples as localized bending loads.

To verify symmetry, the moment signs were reversed: a
positive moment was applied on the left and a negative moment
on the right. This produced an upward, convex deflection pattern,
shown in Figure 9. The resulting deformation was symmetric
to the first case but mirrored about the beam’s horizontal axis,
confirming that the model responds predictably to changes in
moment direction.
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FIGURE 11: THE APPLIED CONTROL MOMENT OVER TIME.

TABLE 2: A PERFORMANCE COMPARISON BETWEEN FREE AND
PID-CONTROLLED CASES.

metric uncontrolled  PID controlled  improvement
peak displacement 0.25 mm 0.24 mm 5.09%
settling time 42.80 ms 16.80 ms 60.75%
RMS acceleration 68.82 dB 68.65 dB 0.25%

4.3. Dynamic Behavior and Control Performance

The dynamic behavior of the fixed-fixed beam was evalu-
ated under impulse loading, with and without active control. The
equations of motion were integrated using an ODE solver to sim-
ulate the dynamic response under impulsive loading. Figure 10
shows the resulting midpoint displacement histories for the un-
controlled and PID-controlled cases. In the absence of control,
the beam experienced a large initial deflection followed by pro-
longed oscillations dominated by the first bending mode. When
the proportional-derivative (PID) controller was activated, the
beam settled more rapidly and with lower peak displacement.

The time history of the applied control moment is shown in
Figure 11. A high initial torque is applied immediately following
the disturbance, followed by a rapid decay as the system stabi-
lizes. This pattern reflects the controller’s responsiveness to the
transient curvature spike induced by the impulse.

Quantitative performance metrics comparing the two cases
are summarized in Table 2. These include peak displacement,
settling time, and root mean square (RMS) acceleration at the
midpoint, expressed in decibels (dB) to better reflect control per-
formance across magnitudes. The results confirm the effective-
ness of moment-based PID control in reducing displacement,
settling time, and RMS acceleration.

5. CONCLUSION

This work developed a finite element model simulating the
flexural response of fixed-fixed beams under impulsive loading,
using moment-based actuation to mimic the effects of piezo-
electric devices through localized torque couples. A curvature-,
velocity-, and integral-error-based PID control scheme was ap-
plied to midspan rotational degrees of freedom, introducing local-
ized damping and correction to suppress vibrations. The model
was validated through static deformation and convergence stud-
ies, confirming its spatial and temporal accuracy. Compared

to the uncontrolled case, the actively controlled beam exhibited
reduced vibration amplitude and a faster return to equilibrium.

Although successful, the model includes simplifying as-
sumptions: Euler-Bernoulli beam theory does not account for
geometric nonlinearities; FR4 is assumed isotropic despite being
anisotropic; and actuator dynamics, sensor noise, and environ-
mental effects are idealized or omitted. Future work will address
these limitations with experimental validation and more realistic
actuator modeling. The methods described give a practical foun-
dation for high-rate, model-based vibration control in compact
structures with limited actuation authority.
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