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ABSTRACT

Physical systems are often far too complex for a virtual model
to fully encapsulate the behavior of a system. Requiring the user
to fine tune parameters of the virtual model over the course of a
system’s life cycle. Data assimilation addresses this problem by
continuously updating the model with sensor data to construct
a personalized model of the physical system. This personalized
model is known as a digital twin. Digital twins of ship systems
can provide insight into the future state of the ship to enable op-
erators to make informed decisions to increase health of the ship.
However, there are a few key challenges that need to be overcome
while updating a model. The first problem is reducing latency
between the physical system and the digital twin. While ensuring
that the digital twin has enough time and data to update. The
second problem is verifying the model is an accurate representa-
tion of the physical system. This paper proposes a methodology
that uses real-time sensor data and a particle swarm optimiza-
tion algorithm to update model parameters for an instrumented
thermal loop developed as a stand-in for liquid-cooled power
electronics. The swarm of particles represent different configu-
rations of a multi-domain model that constitutes the digital twin
of the thermal loop. All computations are done on the edge to
emulate a real world system. Results demonstrate that the par-
ticle swarm algorithm can reliably update a digital twin of the
thermal loop as external changes are made to the system (radiator
turned on and off) with a root mean squared error of under 0.35
°C over the whole system. All models are updated in real-time
with a maximum compute time of 38.4 s; demonstrating the pro-
posed methodologies applicability for real-time data assimilation
within a digital-twin framework.

Keywords: digital twin, particle swarm optimization, edge
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1. INTRODUCTION

Model-driven solutions play a critical role in the develop-
ment of next generation autonomous and semi-autonomous naval
systems. Digital twins are one tool investigated by researchers
to link physical and virtual spaces [1]. By using knowledge of
the physical system and processing real-time (online) sensor data,
digital twins can increase the efficiency of a system while pro-
viding the operator/user an accurate representation of the system.
One of the main benefits of having a digital twin is its look ahead
capabilities [2]. With the ability to accurately predict the behav-
ior of a system, a user can make informed changes to the system
[3]. However, problems arise as the physical system ages or
changes over its life cycle and the model is no longer an accurate
representation of the system. To overcome this challenge, the
model’s parameters must be continuously updated to ensure that
the model is an accurate representation of the physical system.

Real-time model updating is a cornerstone of digital twin
technologies and has been demonstrated by various researchers
[4]. For example, researchers have used the particle swarm opti-
mization algorithm for quick and easy parameter estimation of a
resistance capacitance (RC) thermal model. The results demon-
strate the approximation of RC parameters by the particle swarm
optimization method took only 1.8 s to 10 minutes, depending
on the resistance capacitance configuration, and a model estima-
tion error of +1.2 °C the junction temperature in the steady state.
Additionally, the script was able to be used by staff with low tech-
nical qualification, allowing anyone to update the models thermal
properties [5]. Other researchers have taken advantage of parti-
cle swarm optimization method and implemented the algorithm
into real-time model updating. The particle swarm optimization
algorithm has been implemented into a bridge’s structural health
monitoring system. The group created a finite element model of
a large composite plate composed of several materials working
together to support a bridge. They demonstrated that the par-
ticle swarm optimization can be used to update parameters in
real time of the finite element model. By updating this model
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continuously, a digital twin of the composite plate structure was
created. When the base finite element model was compared to the
model tuned by particle swarm optimization, the error between
the simulation and experimental data was reduced from 7.67% to
0.12%. The increase in model accuracy will aid in predicting the
deterioration of the structure [6]. Moreover, the particle swarm
optimization algorithm has a low computational cost, making it
desirable when dealing with real-time constraints. This idea is
explored further in research done on the system health monitoring
on naval ship structures. Where a mixture of physics-based and
data-driven models utilize the particle swarm optimization algo-
rithm to identify the probability of failure in a cantilever beam. A
variety of different particle swarm optimization hyper-parameters
were explored to find the global minimum while also considering
real-time constraints [7]. The development of real-time model
updating will aid the management of next-generation structures
and systems.

All the previously mentioned examples utilized particle
swarm optimization as the parameter updating technique. Parti-
cle swarm optimization is a meta-heuristic algorithm that utilizes
simple mathematical rules to minimize error of a given cost-
function. In a study comparing the most popular meta-heuristic
algorithms, differential evolution and particle swarm optimiza-
tion had the lowest costs on 30 different benchmark tests. While
differential evolution did get closer to the global minimum than
particle swarm optimization, it did it much slower [8]. In the
context of real-time model updating particle swarm optimization
is the best option. For this reason it was chosen as the parameter
updating algorithm in this work.

In this work, a digital twin of a liquid cooled thermal loop
intended to mimic that used to cool a power converter in an electric
ship application was developed. The digital twin was represented
by a physics-based model being updated continuously in real-time
on a edge computing device. Particle swarm optimization is used
to select the candidate model parameters for testing. The physical
system for this study is a recirculating liquid thermal loop cooling
a simulated electrical load; where an air-cooled radiator serves as
the final heat sink. The loop is instrumented with thermocouples,
flow sensors, and pressure sensors for data collection. To initiate
changes in the experiment, the radiator fan speed and the liquid
flow valve were adjusted during runtime. The digital twin in this
work consists of a physics-based model of the experiment that is
updated in real-time using an error-minimization technique. All
computations are done on an Windows edge-computing device
with a Intel 15-7200U processor collecting data from the physical
experiment in real-time.

While the collection of data happens continuously, the parti-
cle swarm algorithm updates the model using a sliding window.
Here, the particle swarm optimization algorithm waits for a des-
ignated amount of time. The time-series data collected during
this time is known as a window. The particles then attempt to fit
the outputs of the physics-based model to the acquired window,
until a new window is collected. The selection of an appropriate
data window length is important.If the window is too small, the
particles may not have sufficient time to find the global minimum
in the search-space, thus producing a digital twin that never fully
converges. Conversely, a large window will increase latency be-

tween the physical system and the digital twin. Rendering the
model useless to the user, especially in highly dynamic systems.
A key challenge in this work is ensuring that the updated model
is accurate and represents the current behavior of the system (the
thermal loop). If the model is not an accurate representation of
the system, no optimizer will be able to fit a digital twin to the
physical system.

The contributions of this work are two-fold, first a numerical
approach for the updating of thermal models within a digital
twin for power electronics is presented. Second, an experimental
validation is carried out demonstrating that the proposed method
can update a digital twin within a reasonable time period. By
adjusting the model’s parameters to minimize the RMSE error
between experimental sensor data and the simulation data.

2. MATERIALS AND METHODS

This section presents the verification of the model and
methodology behind the particle swarm optimization algorithm.

2.1 Thermal Loop Experiment

The physical system modeled in this work is a thermal Loop.
It is a simple thermal loop outfitted with a centrifugal pump,
heating plate, air-cooling radiator and an expansion tank, with
sensors placed throughout the experiment, shown in Figure 1.
Each sensor is connected to a National Instruments data acquisi-
tion system (NI-DAQ) to acquire the temperature, pressure, and
flow rate measurements. This NI-DAQ then transmits the data
to the x64 edge-computing device running alongside the exper-
iment. The particle swarm optimization algorithm running on
the computer uses this data to update the digital twin. Figure 2
shows how the sensors are linked to the particle swarm optimiza-
tion algorithm. The centrifugal pump pumps water throughout
the copper piping. The temperature and flow rate at the exit of the
pump is recorded by a thermocouple and a turbine flow sensor
directly after the pump. Water then flows through a manually
controlled valve and into the heating plate. The water absorbs
heat from heating plate with a rise in liquid temperature. Ther-
mocouples are placed on top of the heating plate, as well as in the
copper pipe after the heating plate. The radiator is a fan that cools
the water passing through the pipe. The heating plate, radiator
and control valve are controllable parameters that are changed
during the runtime. The final component of the thermal loop is
the expansion tank, this ensures that the pressure of the loop is
kept at the desired level for safe operation during the experiment.

2.2 Model Verification

The physics-based model has numerous parameters that can
significantly change the outcome of the model. There are two
different methods through which these model parameters were
determined. The first way is by solving for them directly. Pa-
rameters such as the cross-sectional area, mass, and length of
the pipe can easily calculated, but some of the parameters cannot
be easily solved for. The second way was using experimental
data to characterize component thermal resistances, masses, con-
vection coefficients, and other properties. Multiple experiments
involving varying run times, valve openings, heat from the heat-
ing plate, and radiator fan speeds were performed. A grid search
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was conducted on each of these tests to find the optimal model
parameters.

2.3 Particle Swarm Optimization Online Updating

Figure 3 illustrates the data flow of the proposed algorithm.
The edge device acquires a window of sensor data and the parti-
cles’ positions are initialized. The particles’ positions represent
the model’s radiator fan speed and the valve opening. The win-
dow of time series data is not a sliding window. Instead, the
window is a user defined amount of time. The data for each win-
dow never overlaps with the prior or succeeding window. Once
the window is acquired by the edge device, the main loop of the
algorithm begins. The newly acquired window is held and the
model is updated by the particle swarm for the duration of that
window. Meanwhile, new data is collected for the next window.

When a new window of sensor data becomes available, tem-
perature data from the heating plate is obtained. After the model’s
heating plate temperature is set, the particles positions are updated
for the duration of the window. First, a particle’s position is con-
figured to be the model’s valve opening and radiator fan speed.
Then the model is ran for a simulation time equal to the duration
of the window. After the simulation, the acquired temperature
data is evaluated by a cost function. The cost function calculates
the root mean squared error (RMSE) between the simulation data
and the acquired sensor data. The particle’s cost is then used
to calculate the velocity to update the particle’s next position, as
shown in equation 1.

X+ =yt 4 x! (1)

If a particle has a high-cost relative to the other particles, its
next velocity and position will change dramatically. On the con-
trary, if a particle’s cost is low, its next velocity and position will
remain largely unaffected. The velocity is influenced by three
components, shown in equation 2. The first component is Inertia
wV!. The particle’s velocity is inherited from the previous step
and influences the particles next position. The second component
is the cognitive component r1¢1 (P; — X!). The cognitive compo-
nent is the difference between a particle’s personal best position
and its current position. This difference is multiplied by a user
defined acceleration constant ¢; and a uniformly random number
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FIGURE 1: Labeled picture of tabletop thermal loop experiment.

heat sink

) control valve

thermocouple thermocouple

pump | PSO updater rad

thermocouple

FIGURE 2: Diagram of the thermal loop experiment.

r1, between zero and one. The final component is the social com-
ponent 72¢>(Pg — X!). The social component finds the difference
between the particle’s current position and global best position.
Then the difference is multiplied by a user defined acceleration
constant ¢, and a uniformly random number r;, between zero
and one [9].

Vl.t+l :wV{-}-rl(ﬁl(Pi—Xl-t)+7'2¢2(Pg—Xit) (2)

The particles’ positions will continue to be updated until a
new window of sensor data is available. Once a new window is
available, the model with the lowest cost is returned to the user
and the particles’ global cost and personal costs are reset. A
random number between [-1, 1] is added to each of the particles’
positions, before a new window of sensor data is assessed. This is
an essential step to continuously update the model of a dynamic
physical system. When the physical system changes the optimal
model parameters to reach a global minimum also change. In-
troducing another degree of randomness at the beginning of a
new window will prevent the particles from getting trapped at
the local/global minimum of a previous window. The calibrated
digital twin can then be used to gain insight on the behavior of the
system. The variables used in this work for the particle swarm
optimization are:

* X!: Position of particle i at time ¢
* V!: Velocity of particle i at time

* P;: Personal best position of particle i at time ¢

Pg: Global best position found by any particle in the swarm
at time ¢
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e w: Inertia weight, damping the impact of the previous ve-
locity

e ¢1: Cognitive coefficient, controlling the influence of the
personal best position

* ¢,: Social coefficient, controlling the influence of the global
best position

* rq,7r2: Random values in the range [0,1] used to introduce
stochasticity in the velocity update equation
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FIGURE 3: Particle swarm optimization digital twin calibration flow
chart.

3. RESULTS AND DISCUSSION

To test the ability of the particles to calibrate the digital twin
to the thermal loop. The experiment was run alongside the digital
twin for two and a half hours while changes to the experiment were
made periodically. Before the edge device began sampling data,
the pump was turned on and power was supplied to the heating
plate. After a couple of seconds, the edge device began acquiring
data. The experiment was ran uninterrupted without any changes
for 30 minutes. Until the radiator was turned on and the water
began to cool. After another 30 minutes, the temperature of the
water converged to about 29°C. Then the radiator was turned
off and the control valve was adjusted to be 50% open. Finally,
the power to the heating plate was turned off and the radiator
was turned back on until the temperature converged. The edge
device stopped acquiring data and the experiment was turned off.
Figure 4 shows the results from the particle swarm optimization
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FIGURE 4: Particle swarm optimization updating a digital twin ev-
ery 5 minutes using online temperature data.
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FIGURE 5: Particles positional improvement over time.

algorithm running alongside the experiment for two and a half
hours.

The swarm consists of five particles updating on a five-
minute window. Each particle updated an average of five times
per window. Initially, the particles’ representation of the thermal
loop experiment results in an unfitted model. This is to be ex-
pected, as all the particles are initialized with random radiator
fan speeds and valve openings. The starting temperature of the
Simscape model is unknown and assumed to be ambient tem-
perature. These initial guesses skew the starting parameters of
the particles, producing an inaccurate model initially. However,
the information gained from the previous window is then used to
improve the initial guess on the next window. The recovery from
bad guesses is shown in Figure 5.

The particles’ parameters are also able to recover from
changes during the thermal loop experiment. As the compo-
nents are turned on and off, the forecast of the model changes.
This results in more initial bad guesses, as the information gained
from the last window skews the results of the latest window. De-
spite the changes throughout the experiment, the particles can
recover in about two windows of data.

Copyright © 2024 by ASME



TABLE 1: Performance metrics of the concatenated windows.

thermocouple location SNR (dB) RMSE (°C) MAE (°C)

after pump 39.60 0.323 -0.031
after radiator 39.07 0.342 0.070

An investigation into the consistency of the simulation times
was performed and reported on in Figure 6. For this test, 1000
simulations were run on the same five-minute window. The
recorded results demonstrate an average runtime of 21.76 seconds
and a standard deviation of 2.8 seconds. As expected from a
windows OS the timing distribution is heavily skewed to the left
with large outliers. The max simulation time was 38.4 seconds.
The max time limiting factor for how many particles can be used,
while ensuring each particles’ parameters converge.

number of total instances

10" -

26 28 30
time (s)

FIGURE 6: Logarithmic timing distribution of a 1000 simulations.

TABLE 2: 1000 simulation timing report.

metrics time (s)
mean 21.76
standard deviation 2.8
max time 38.4

4. CONCLUSION

As naval systems become increasingly complex, the need
for data driven solution will become essential in maintaining
the overall health of a ship. In this research, a thermal loop
experiment was modeled in Simscape to act as a digital twin.
The model was updated by using online sensor data to inform a
particle swarm algorithm. Where five particles would find the
optimal radiator fan speed and valve opening to fit the model to a
window of temperature data. The results demonstrate the ability
of the particle swarm to return an accurate representation of the
experiment every five minutes in the form of a digital twin.
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