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ABSTRACT

This paper presents an adaptive agent-based control scheme
for operating distributed energy storage in naval power systems.
The adaptive agent-based control scheme enables batteries dis-
tributed throughout an electrical grid to autonomously commu-
nicate and align each other to operate in the most effective way
possible. To achieve this, each battery is assigned an agent capa-
ble of controlling the battery’s output with the goal of maximizing
the life of the battery while supplying the required power to the
load. Along with the goals of the individual agents, system-level
alignment strategies are employed to maximize certain aspects
of the battery operations. The employed system-level alignment
strategies are duration, ready, and aggressive. The duration strat-
egy maximizes the longevity of grid resources of expected battery
degradation and electric generator component wear by utiliz-
ing the system in a manner that optimizes system-level longevity.
The ready strategy maximizes the amount of power being kept
in reserve for use when needed while the Aggressive strategy
maximizes power output by allowing the batteries to be used to
their limits to deliver as much power as possible. Moreover, an
adaptive strategy was also created by mapping the previously
mentioned static strategies to the levels of power demand. This
adaptive strategy allows the batteries to operate in the most effi-
cient manner while adapting to the power demand from the load.
To analyze these strategies, the chosen performance metrics were
1) battery and generator remaining useful life (RUL), 2) average
battery temperature, and 3) percent of time the requested load
profile was achieved. Results demonstrate that the adaptive strat-
egy operates with better overal efficiency by maintaining the 2nd

highest battery RUL, the 3rd highest generator RUL and the 2nd

lowest average temperatures. It was also the only strategy to
fulfill the maximum pulse seen from the load.
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1. INTRODUCTION

Lithium-ion batteries are the dominant energy storage (ES)
solutions being implemented into electrical grids. Most research
in this area is done with optimizing ES control for renewable
energy implementation in mind. This usually entails optimizing
the right times to store and release energy into a grid to make
up for the varying energy supply of renewable sources [1, 2],
or supporting smaller energy generation plants with renewables
coupled with batteries [3, 4]. However, optimizing distributed
battery operations in a vehicle or plant-based microgrid with
non-renewable energy sources is less-studied. An example of this
type of microgrid would be naval platforms that integrates electric
propulsion systems with other dynamic loads (e.g., radar, pulsed
weapons). Effective control schemes for this class of microgrids
would enable more efficient ES allocation, longer lifespan for grid
components, and more robust grid operations in general.

Typically, a battery management system is used to control a
designated battery pack. However, in larger grids with multiple
distributed battery packs throughout, an overall control scheme
is needed to monitor and operate the distributed energy storage
resources. The larger the grid, the harder for traditional bat-
tery management systems to solve energy distribution efficiently.
Unavoidable issues such as distorted voltage profiles and power
fluctuations during a ships operation can also decrease the effec-
tiveness of a control system. A multi-agent system is a control
system that can address these problems by dividing the complex
large-scale systems into smaller subsystems [5]. The application
of multi-agent systems in microgrids is becoming popular due to
the agent’s ability to cooperate and respond to fluctuations in the
grid, while working autonomously in remote grids [6]. Research
shows that this control scheme can ensure safe grid operation
while reacting to disturbances on a decentralized energy storage
system [7].

Multi-agent systems have been implemented before in man-
aging the power flow of a simulated microgrid comprised of var-
ious renewable energy sources and batteries. In Necmi et al, The
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researchers created three different agents (battery, grid, and load)
which worked together to effectively distribute power throughout
the grid during different scenarios. The results demonstrate that
a multi-agent approach improves stability and power quality of
the microgrid [8]. Machine learning methods have been utilized
to further improve the coordination of agents to distribute power
throughout a simulated microgrid. Reinforcement-learning has
been implemented to help better coordinate agents, forming an
overall strategy that can change depending on the state of the
power grid. Preliminary simulation results showed that the agents
are capable of suppling power to a load under fixed and variable
communication interruptions [9]. Efficiently supplying power
throughout a ship’s grid is essential when performing maritime
operations. Failures caused by damage or inefficiency in the grid
can lead to downtime which can cause degradation and be po-
tentially fatal to the crew. These failures or efficiencies can be
avoided by the use of an Agent based control.

Energy storage system (ESS) agents can be implemented to
monitor and control a battery pack and its power converter in-
terface. These agents can communicate to each other and adapt
to meet the grid’s required power demand. With this commu-
nication, the energy contributions of each battery pack can be
controlled to optimize the battery pack’s state within the grid
leading to a more robust and efficient grid.

In this paper, an adaptive agent-based control scheme is de-
veloped to optimize distributed battery implementation into naval
microgrids. The agent-based control scheme enables communi-
cation between three battery energy storage systems, a generator,
and load within a simplified electrical grid. An adaptive strat-
egy is also developed to allow the agent-based control scheme
to be completely autonomous. The contribution of this paper is
the development of a control scheme in which distributed battery
energy storage agents throughout a grid can autonomously com-
municate and adapt in order to increase the grid’s readiness and
longevity.

2. METHODS
This work contains an adaptive agent-based control scheme

for battery implementation into electrical grids. The control
scheme and simplified electrical grid is developed and tested in
MATLAB’s Simulink environment.

2.1 Energy Storage System Agents
There are three energy storage system agents used in the

control scheme. The ESS agents will monitor the outputs of
the battery models and communicate the temperature and state of
charge (SOC) to the other agents. With this information exchange
the agents will organize themselves into a run order based off
the priority of their batteries. The priority of the batteries is
determined by their current state of charge and temperature. The
purpose of this priority-based run order is to allow the batteries
to shift the load onto the strongest battery(s) in order to let other
batteries recuperate their charge or cool down.

2.2 Agent’s Logic
The agents will monitor the outputs of their battery in terms

of the power output, current state of charge, and the battery’s

temperature. The agent will decide on its battery’s new output,
based off the monitored values and priority order. After the
outputs of the battery has been captured and the priority number
assigned; the first step is to run a battery status check. The
system check will verify whether the battery and its connections
to the grid are operational. If the check comes back as both
are operational, then the decision tree, seen in Figure 1, will
determine which mode the battery should be in.

battery mode 
set to supply

battery mode
set to idle

battery mode
set to charge

 
load need
power?

battery mode
set to idle

yes

yes

yes

no

no

no

battery too
hot?

battery 
charged?

FIGURE 1: Decision tree for selecting the battery mode.

The battery can be in one of three modes charging, supply,
or idle. The battery will enter charging and supply mode when it
needs to charge or supply power. The battery can also enter idle
mode for when the battery does not need to be supplying power or
charging. This mode is also used to disconnect the battery when
it becomes too hot; it will reconnect when it has cooled back
within a safe temperature. Once the battery mode is selected the
agent will then determine the output of its battery and proceeds
to send the power to service the load. Then the process starts over
again for the next iteration of the model.

2.3 Simplified Microgrid
The microgrid is composed of simplified models of key

power components. The components are three energy storage
systems (ESS), a generator connected to the bus through an AC-
DC converter, and a variable load. The ESS components are
composed of a battery, DC-DC converter, and contactors. The
grid layout can be seen in Figure 2.

The generator model is an ideal power source for the batteries
to charge from and does not aide in fulfilling the load. There is
an implemented counter to count the start-stop cycles to produce
a RUL measurement to help gauge the battery’s performance in
the micro-grid. Every time the generator is turned on and then
off is counted as one cycle. The cycle life of the generator was
chosen to be 100 start-stop cycles and is considered to be the time
between maintenance intervals.

The battery models are simplified to meet the needed outputs
for the agents to measure. They calculate the state of charge, RUL,
and the temperature of the battery. The equations used can be
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FIGURE 2: Diagram of the simplified microgrid.

seen in equation 1. For temperature, currently only joule heating
is calculated.

𝑇batt,f =
ℎbatt𝐴batt (𝑇amb − 𝑇batt,i) + 𝑃Transfer, batt

𝑚batt𝑐batt
(1)

where ℎbatt, 𝐴batt, 𝑚batt, 𝑇amb, 𝑇batt,i, and 𝑐batt is the convective heat
transfer coefficient, surface area, mass, ambient temperature, ini-
tial temperature, and specific heat capacity of the battery respec-
tively. 𝑃Transfer, batt is the power flowing through the battery.

The state of charge calculation is based off the power output.
𝑆𝑂𝐶 and 𝑆𝑂𝐶0 are the current and beginning state of charge of
the battery. The time integral of the power transfer is added to the
beginning state of charge to determine the current state of charge.
This is seen in equation 2.

𝑆𝑂𝐶 = 𝑆𝑂𝐶0 +
∫
𝑃Transferdt (2)

The RUL is calculated from cycle count and power output.
This equation is seen in equation 3, where 𝐸max, 𝐶life and RUL
are the max energy capacity, cycle life and RUL of the battery.

𝑅𝑈𝐿 = 1 −
∫
𝑃Transferdt

𝐸max ∗ 𝐶life
(3)

The load in the model is a variable resistor subjected to a pre-
defined power profile. The load profile can be seen in Figure 3.
The idea behind the load profile is a simple 10-hour mission for
a naval ship. With a standard operating load of 3.8 kW and
two short engagements at around 150 and 380 minutes. At the
beginning of each engagement the ship will increase speed thus
increasing the load power level to 5 kw. It then elevates its
awareness by turning on sensors and then proceeds to fire pulsed
weapons. At the end of each engagement the ship returns back to
the standard operating load.

2.4 Strategies
The agents will initially be aligned to an overall strategy

during the duration of the test. Three static strategies have been
developed to prioritize certain aspects of the batteries. Table 1
shows the three strategies. The power output values were decided
on by the operational limits of the Simpliphi 3.8 battery which
has maximum continuous discharge of 1.9 kw and maximum dis-
charge of 4.1 kw for 10 minutes. The duration strategy is designed

FIGURE 3: The load profile used to test the control scheme.

to prioritize the RUL of the battery by having a lower power out-
put and limiting the useable state of charge range between 20%
and 80%. The ready strategy prioritizes keeping as much energy
in the batteries as possible. This is done by increasing the power
output to a 1.1 C-rate (where C is battery capacity) and reduc-
ing the useable state of charge range from 100% to 80%. The
reason for the increase in power output instead of a decrease is
due to the batteries being the sole energy supply to the load. In
order to satisfy the load with a smaller SOC range the increase in
power output was needed. The aggressive strategy is developed
to prioritize the maximum amount of output power. To do this,
the state of charge range was enlarged to be from 0.5% to 100%,
while the power output was kept at a 1.1 C-rate. To enable a fully
adaptive control scheme, an adaptive strategy was created based
off the load profile. The static strategies were mapped to power
ranges. The duration strategy covers the 0 to 3.8 kw range, the
ready strategy covers the 3.9 to 5 kw range and the aggressive
covers 5 kw and above.

TABLE 1: The parameters set for each static strategy.

strategies
duration ready aggressive

max power output 1.9 kw 4.1 kw 4.1 kw
max temperature 40 °C 60 °C 60 °C

SOC range 80 %-20 % 100 %-80 % 100 %-0.5 %
load factor 0.6 0.7 0.9

temperature factor 0.4 0.3 0.1

3. RESULTS AND DISCUSSION
Figure 4 shows the performance of the different static strate-

gies in addition to the adaptive strategy. This shows the com-
bined output power of the batteries to the load compared to the
load profile. From this figure it can be seen how well the static
strategies and the adaptive strategy were able to supply the de-
manded power. For the duration strategy the load is under-met
for a good portion of the load above the standard operating power
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FIGURE 4: The strategy’s performance against the load profile.

level. This is expected since the duration strategy was created to
maximize the longevity of the batteries. This leads to the trade
off of failing to meet the higher requested load levels in order
to operate the batteries in an efficient manner. The ready and
aggressive strategies were able to fulfill most of the load profile
due to their higher output allowance. However, they both fail at
different points during the pulsed loads. This is because due to
the agents trading off which agent is charging their battery while
the other two are discharging. This cycle of one battery charging
while the others discharge leads to only two batteries at a time
having the ability to fulfill the pulsed loads. In order to meet the
smaller pulse two batteries have to max out their output rating and
during the larger pulse all three batteries need to be discharging
to meet it.

The adaptive strategy was able to meet both the smaller and
larger pulses. Since the adaptive strategy transitions through
the three static strategies the agents were able to prepare for the
incoming pulses. This is due to the agents entering the ready
strategy when the load power level surpassed the standard oper-
ating level of 3.8 kW. Which allowed the batteries to maintain a
high SOC of above 80% in anticipation of incoming pulses while
still fulfilling the current load with higher power outputs. When
the load power level surpassed 5 kw the agents entered the aggres-
sive strategy which allowed them to discharge past the 80% lower
SOC bound from the ready strategy and successfully fulfilled the
pulsed loads. The adaptive strategy did however fail at a couple

of points during the mission at times 160, 335, and 403 minutes.
This is a failure of strategy transition. At 160 minutes, the agents
are shifting out of the aggressive strategy and into the ready strat-
egy. As the agents are in the aggressive strategy they are free to
discharge their batteries down to 0.05% SOC where as the lower
bound for the ready strategy is 80% SOC. When the batteries get
to this transition point, they are typically under this lower bound
which leads to the agents immediately charging their batteries
and dropping the load. This same failure is seen at 403 minutes.
At 335 minutes the same out of bounds failure occurs but this
time its during the transition from the duration to ready strategy.
This failure can be remedied with a smooth transition of slowly
shifting each battery into the new strategy over a certain time
period; this method is being further investigated.

To gauge the performance of the agent strategies in opti-
mizing the battery usage for their intended priorities are shown
in Figure 5. The duration strategy was created to increase the
longevity of the batteries that the agents control. The strategy has
proven to be successful and can be seen in Figure 5 as it achieved
the highest battery RUL, generator RUL, and the lowest average
temperatures for the batteries.However, this performance comes
with the trade off of being the worst in load fulfillment.

The ready strategy was created to maximize the energy re-
served in the batteries to increase readiness while fulfilling the
load. The ready strategy has successfully achieved this goal and
can be seen in the metrics that the batteries were maintaining a
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FIGURE 5: The performance metrics of the strategies against the
load profile.

higher energy level by using the generator the most. while main-
taining a higher energy, level the ready strategy was still able to
achieve the 2nd highest load fulfillment. In meeting the goal of
maintaining high energy level the strategy traded off battery and
generator RUL to do it.

The aggressive strategy was created to maximize the power
availability and the fulfillment of the load. The aggressive strat-
egy successfully achieved this goal by fulfilling more load than
other strategies and using the generator the least, however this
came with the trade off of having the highest average battery
temperatures and the 2nd lowest battery RUL.

The adaptive strategy was created to capitalized on the other
strategies’ benefits. It can be seen that the adaptive strategy is the
middle ground between all the strategies by taking up the most
area in Figure 5. It achieved a close 3rd in battery RUL, generator
RUL and load met. It also achieved the 2nd lowest average bat-
tery temperature. The metrics that the adaptive came in 3rd are
very close in value to the 2rd-place strategy. This is due to the
simplicity of the load profile and as well as the simplicity of the
battery and generator models. The difference in the metric values
are expected to expand as the load profile becomes more complex
and with more detailed battery RUL models that incorporate the
nonlinear behavior of the battery’s RUL in the more aggressive
uses in both temperature and discharge rates. In future works this
control scheme and the strategies will be tested on more complex
load profiles and the detail of the RUL models will be increased.

4. CONCLUSION
This paper presents and tests an adaptive agent-based con-

trol scheme for distributed battery energy storage systems within a
simplified microgrid; where the batteries were assigned agents to
allow for control and communications. The agents were aligned
to overall strategies to operate the batteries in unison to max-
imize certain aspects. The static alignment strategies are du-
ration, ready, and aggressive which maximizes remaining useful
life, energy reserves, and power output respectively. The adaptive
strategy was created by mapping the static strategies to certain

power ranges. Allowing the agents to adapt to the power de-
mand. A load profile was defined and used to test and compare
the strategies. The adaptive strategy resulted in the 2nd highest
battery remaining useful life and the 3rd highest generator remain-
ing useful life while maintaining the 2nd lowest average battery
temperatures. It was also the only strategy to fulfill the maximum
pulse from the load. This demonstrates that the adaptive strategy
is a good mix between maximizing battery remaining useful life,
energy reserves, power output and minimizing average battery
temperatures. Future work will focus on adding more complexity
to the overall system and models as well as further refinement of
the adaptive strategy. Experimental validation will be undertaken
on a microgrid with distributed energy systems.
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