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Abstract. Topological Data Analysis (TDA) combines methods from
algebraic topology and modern mathematics to provide features enabling
the characterization of point clouds. Often, these features are used with
a machine learning algorithm to resolve classification problems. While
results in the literature show that TDA features can be powerful in an-
alyzing complex systems, their extraction requires the construction of
persistence diagrams or charts that are computationally demanding. Our
primary focus is the real-time identification of nonstationary time series
in the sub-millisecond or high-rate realm, where TDA is difficult to ap-
ply. Here, we propose a novel approach to TDA feature extraction termed
"Fast TDA." Fast TDA consists of extracting features from time series in-
spired by traditional TDA methods. Our method discovers 0-dimensional
holes (H0) through the Euclidean distances between consecutive neigh-
bors in the point cloud, and 1-dimensional holes (H1) from the minor
axis of ellipses fitted to the point cloud. This reduces computational
time compared to conventional TDA by 90%. Our method’s accuracy
and computing cost are analyzed using laboratory datasets extracted
from the Dynamic Reproduction of Projectiles in Ballistic Environments
for Advanced Research (DROPBEAR) testbed, a dynamic system com-
promising a single dominating frequency. Results show a high correla-
tion between (H1) and Fast TDA features in detecting the location of
a moving boundary condition. We also provide an initial framework for
two dominating frequencies implementing synthetic data. We found that
Fast TDA outperforms traditional TDA in handling noisy signals, such
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as those from DROPBEAR, by reducing the mean response error by 40%
and performing adequately over a dual harmonic signal by identifying 6
out of 7 key features. Lastly, the computing time for this algorithm is
approximately 1900 times faster than for traditional TDA.

Keywords: High-rate systems · nonlinear time series · topological data
analysis · persistence homology · machine learning · topological features.

1 Introduction

Topological data analysis (TDA) is a data analysis tool that combines concepts
of algebraic topology and modern mathematics. It is often used to extract key
features from images or dynamic measurements to solve classification problems
[10, 11, 7]. Specific to time series analysis, TDA is applied to the study of point
clouds, whereas time series under study require embedment into a phase-space.
This is done typically based on Taken’s Embedding Theorem, where data is
embedded in a time delay vector of appropriate size [2]. Of interest is the appli-
cation of TDA for the study of time series in real-time. While TDA has shown
particular promise at handling complex and/or noisy systems [3, 4, 12], a key
obstacle is the large computation time required in forming persistent diagrams
from which TDA features can be extracted.

Previous research has studied real-time application of TDA for high-rate dy-
namic systems, here defined as engineering systems that undergo rapid changes
in dynamics over very short durations, with computing requirements in the sub-
millisecond realm [5]. In particular, Razmarashooli et al. [9] showed that the
maximum persistence of H1 can be used in a machine learning model to track
a moving boundary condition. Yet, the technique still required the construction
of persistent diagrams which impeded its application to high-rate systems.

In this paper, we introduce the concept of Fast TDA, motivated by deploy-
ing TDA-based methods to high-rate systems. Fast TDA includes methods that
approximate TDA features of interest, without having to construct a persistence
diagram. Based on results presented in [9], we study how the maximum persis-
tence of H1 can be estimated directly from a point cloud. Our algorithm consists
of identifying the persistence of holes in a point cloud (H1) through the fitting
of ellipses and relating the length of the minor axis to H1. In this introductory
work, we study the simple case of a single harmonic system, consistent with the
high-rate dynamics studied in our prior work [9]. After, we extend the application
to two-harmonic dynamics also embedded in a two-dimensional space, and iden-
tify opportunities and limitations to generalize the algorithm with applications
to higher dimensional spaces and numbers of dominating harmonics.

The remainder of the paper is organized as follows. Section 2 presents the
Fast TDA algorithm to estimate H1, and describes the synthetic and laboratory
datasets used in this study. Section 3 presents and discusses the results. Section
4 concludes the paper.
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2 Methodology

This section outlines the methodology employed in our study. It starts with a
presentation of the Fast TDA algorithm, followed by a description of the datasets
used for studying the performance of the algorithm.

2.1 Algorithm

Using the concept of TDA, we aim to find the birth and death times of topo-
logical features without creating a persistent simplicial complex, here targeting
two-dimensional point clouds in Euclidean space. In traditional TDA, the H1

feature is quantified by continuously dilating the radii of each data point, pro-
ducing disks whose intersections from edges between points are based on their
mutual distances. At certain radii, these edges can form cycles or one-dimensional
"holes" ("birth" of H1 feature), which eventually fill in ("death" of H1 feature).
The duration of H1, or death − birth, is the persistence of H1 [1]. In two di-
mensions, feature H0 also exists and relates to the connected data points in the
points cloud. The estimation of H0 is straightforward and can be obtained by
computing the distance between neighboring points.

In our Fast TDA approach, we estimate the persistence of H1 by computing
the maximum distance between neighboring points to determine the birth time.
After, we fit an ellipse through the point cloud, and the length of the minor
axis corresponds to the death of H1. Many computing techniques exist to fit an
ellipse through points [13]; here, we use the least square fitting of an ellipse.

In the case of a single harmonic signal, embedding measurements in a two-
dimensional delay vector gives rise to a two-dimensional point cloud. Assuming
low noise, such a point cloud will include a single ellipse, and the problem reduces
to fitting all points through a single ellipse. Once the number of dominating
harmonic increases, a two-dimensional point cloud will feature crossings, and
thus, the point cloud needs to be partitioned into regions that can be fitted
using a single ellipse.

Consider the dual harmonic signal

x(t) = cos(2πf1(t)) + cos(2πf2(t)) (1)

where f1 and f2 are the frequencies of the system, with f1 > f2. The phase-space
will exhibit different elliptical-like shapes that depend on the choice of time delay
and on f1 and f2. However, for a time delay below 0.25/f2, the reconstructed
state space will form semi-elliptical shapes. Here, we introduce multi-resolution
windowing methods to identify the ellipses. First, a low-resolution window is used
of a size sufficiently large to cover one entire period, ideally corresponding to a
value close to the least common multiple of 2/f1 and 2/f2. A higher-resolution
window slides within the low-resolution window to find local ellipses. The size of
this high-resolution window can vary based on identified crossings in the point
cloud. A crossing is identified when the distance between neighboring points is
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less than a predefined threshold. At this stage of the algorithm, the full point
cloud is simplified as a set of ellipses.

Once the ellipses are extracted, we identify their intersections. The diameter
of the largest circle that can fit inside a given intersection, termed the incircle [6],
corresponds to the death of the corresponding H1. This is found by calculating
the centroid of the shape formed by the intersecting ellipses, and setting its
radius as the minimum distance to an edge. For non-convex shapes, the process
involves breaking down the shape into smaller convex components, calculating
the convex hull, and finding the largest incircle of the convex hull. This circle’s
radius can be refined by iterating over potential centers within the non-convex
shapes.

2.2 Datasets

Our datasets consist of synthetic harmonic signals Eq. (1) and laboratory data.
For the case of the single harmonic (Case Study 1), the synthetic signal takes
f1 = f(1)(t), f2 = 0 varying between 1 and 3 Hz every 2-second intervals. These
values are selected based on laboratory data from the DROPBEAR testbed
described later. The frequency stats at 1 Hz initially, climbs to 3 Hz in the
subsequent period, stabilizes at 3 Hz for the next 2 s, drops to 1 Hz for another
period, and holds at 1 Hz for the final segment. The size of the moving window
is 1/fmin + τ = 1 + 0.03 = 1.03 s, with data embedded using a time delay of
τ = 0.03 s. The signal is plotted in Figure 1.

Laboratory data are extracted from the DROPBEAR testbed (Case Study
2). See Reference [8] for a complete description of the testbed and datasets.
Briefly, DROPBEAR consists of a cantilever beam with a fast moving boundary
condition. The task consists of locating the boundary condition, also known as
"car", using acceleration measurement. Our dataset corresponds to Dastaset-6
test 9 to benchmark with previous research [8]. Here, data is embedded using
τ = 0.004 s with a moving window size of 0.06 s that slides every 0.001 s.

For the case of the dual harmonic (Case Study 3), the synthetic signal arbi-
trarily takes f1 = 7 and f2 = 2. The size of the first window is selected to be 2
s. The sampling frequency is set at 1000 Hz, and the time delay is 0.03 s. We
use a threshold of 0.02 for the consecutive Euclidean distance between points to
identify relevant data points. The computing time of our Fast TDA algorithm is
approximately 50 µs, compared to 980 ms for yielding a speed-up of 1900 times.

3 Results

3.1 Case Study 1: synthetic single harmonic signal

Figure 1 compares the evolution of the minor axis length (estimate H1) against
the maximum persistence of H1. It can be observed that the minor axis provides
a more stable representation of the system changes compared to the maximum
persistence of H1. However, there is a time delay between the maximum persis-
tence of H1 and the fitted ellipse caused by the sliding window’s size and thus
the sampling rate.
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Fig. 1. Comparison of Fast TDA with TDA features for a non-stationary synthetic
harmonic signal.

3.2 Case Study 2: DROPBEAR

Figure 2 plots the time series acceleration signal obtained from DROPBEAR.
The length of the minor axis of the fitted ellipse is compared against the max-
imum persistence of H1 and the frequency obtained from a short-time Fourier
transform (STFT). Results are mapped using linear regression to the cart loca-
tion to facilitate the comparison. The mean response error is 8.5 mm for the Fast
TDA feature, 14.1 mm for the TDA feature, and 11.9 mm for the STFT. The
feature provides an estimation within ± 10 mm 90% of the time using the Fast
TDA feature, 75% of the time for the TDA feature, and 86% of the time for the
STFT feature. The better performance of the Fast TDA feature is attributable
to better robustness with respect to noise. Here, less lag is observed with respect
to the synthetic datasets, because of the significantly smaller size of the sliding
window.

Fig. 2. Comparison of Fast TDA features with TDA and STFT features in predicting
DROPBEAR’s cart location.
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3.3 Case Study 3: synthetic dual harmonic signal

Figure 3(a) shows the best-fitted ellipses in the point cloud and the largest in-
circles. Figure 3(b) compares the key persistence of H1 obtained from Fast TDA
and traditional TDA. The results from the persistence diagrams reveal that the
Fast TDA method effectively identifies 6 points with maximum persistence out
of 7 key persistence features. This high precision demonstrates that Fast TDA
can reliably capture significant topological features in the data. Table 1 pro-
vides a detailed comparison between Fast TDA and traditional TDA, listing the
birth and death times of the persistent H1 features identified by both methods.
Traditional TDA shows variability in birth times ranging from 0.017 to 0.033,
while Fast TDA consistently detects features with a slightly higher and more
uniform birth time of 0.039. However, with higher resolution, the birth times for
Fast TDA are expected to converge to values close to zero, similar to traditional
TDA. The death times of features are almost similar for both methods, confirm-
ing that Fast TDA captures the essential topological features with comparable
accuracy.

Table 1. Results from the persistence diagram

Method Feature Point1 Point2 Point3 Point4 Point5 Point6
TDA Birth 0.026 0.03 0.023 0.020 0.033 0.017
(H1) Death 0.51 0.48 0.47 0.43 0.34 0.34

Fast TDA Birth 0.039 0.039 0.039 0.039 0.039 0.039
(H1) Death 0.53 0.50 0.48 0.45 0.34 0.34

Fig. 3. Comparison of persistence diagram for Fast TDA and TDA
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4 Conclusion

In this paper, we proposed the concept of Fast TDA, which estimates TDA
features directly from a point cloud of data without necessitating the computa-
tion of persistence diagrams. The development of the Fast TDA approach was
motivated by the deployment of TDA at the sub-millisecond realm, targeting
applications to high-rate systems. The results showed that Fast TDA could be a
powerful method to extract topological features inspired by TDA, significantly
improving computing time, and outperforming traditional TDA in a noisy envi-
ronment.

Future research is to generalize the H1 estimation algorithm to point clouds
of higher dimensional space, and to systems exhibiting a larger number of domi-
nating frequencies and noise. From our findings, we anticipate upcoming research
steps to include 1) comprehensive analysis of Fast TDA feature extraction from
multi-frequency systems; 2) extension through higher-dimensional space through
ellipsoids; and 3) the extension of Fast TDA to other metrics via the adaptation
of other distance metrics.
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