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ABSTRACT

Predicting the electro-thermal response of lithium-ion bat-
teries is critical for energy storage system integration. However,
due to their rate dependent behavior battery testing is expen-
sive and time intensive. There is a need to develop reliable
predictive models that can emulate the electro-thermal behavior
of a battery. Traditional physics-based models, while effective,
are computationally intensive and require detailed knowledge of
electro-chemical properties to parameterize, making them diffi-
cult to implement for hardware-in-the-loop battery system testing.
To address theses limitations, this paper presents a data-driven
electro-thermal battery modeling approach using deep neural
networks trained on hybrid pulse power characterization data.
The proposed model aims to predict both electrical and ther-
mal responses of lithium-ion batteries under various dynamic
load conditions, offering a scalable and efficient alternative to
physics-based electro-thermal battery modeling. Applying an it-
erative approach to step through a load profile, a deep neural
network ensemble predicts the change in temperature, voltage,
and state of charge given previous conditions was able to cal-
culate future behavior for a 1C constant current discharge with
0.07 'V, 2.35%, and 0.25°C average absolute error, for voltage,
state of charge, and temperature respectively.

Keywords: Deep neural networks, battery modeling, data-
driven approach, hybrid pulse power characterization, on-
line learning, electro-thermal prediction, activation func-
tions, machine learning, energy storage, battery safety

1. INTRODUCTION

Operational and maintenance costs are critical concerns for
the maritime industry. Ships often face high maintenance cost
due to power fluctuations that degrade engine performance and
increase wear.To address these inefficiencies, the integration of

*Corresponding author: austindowney @sc.edu

energy storage systems has been investigated as a means to smooth
load fluctuations and enable engines to operate closer to their op-
timal efficiency [1]. These benefits have driven growing interest
in the continued electrification of shipboard power systems. Due
to the nature of the maritime industry, electrification requires the
application of efficient and robust mobile energy storage systems.
To validate these systems at the design stage, battery emulators
are often used [2]. Interest in electro-thermal battery emulation
systems [3] is growing, as they enable more efficient electro-
thermal testing and deployment of energy storage systems. This
work develops data-driven models that could be leveraged by
electro-thermal battery emulators in the future.

Owing to their high energy density, long cycle life, and falling
cost, the deployment of lithium-ion batteries has surged [4]. How-
ever, significant challenges arise surrounding battery misuse, in-
cluding overheating, deep discharging, and thermal runaway [5].
These issues pose a major risk to lithium-ion battery’s imple-
mentation on maritime platforms. To improve robustness, accu-
rate electro-thermal modeling and prediction of battery behavior
are imperative before degradation or safety hazards occur [6].
Physics-based models, such as the equivalent circuit model or the
single particle model, require extensive computation and are dif-
ficult to implement due to the nonlinear behavior of batteries [7].

The subsequent rise in data-driven methods has highlighted
neural networks for capturing the nonlinear dynamics subject
to a wide array of variables [8]. While the electrical and ther-
mal domains within a battery are highly interdependent, existing
research employing neural networks for battery prognostics has
seen success in both domains, regarding state of charge (SOC) [9]
and temperature estimation under varying conditions [10]. Fur-
thermore, neural networks significantly reduce the cost of com-
putation, a major limitation in the application of physics-based
models [11], enabling real-time monitoring of the dynamics that
complex physics-based models could not previously support.
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FIGURE 1: A block diagram to visualize the flow of information through each iteration of a current load profile to predict the electro-thermal

response.

This work introduces a framework for developing and em-
ploying deep neural network ensemble (DNNE) to predict the
electro-thermal response of a lithium-ion battery via hybrid pulse
power characterization (HPPC). To expand, the proposed electro-
thermal model will employ a group of neural networks to es-
timate the change in voltage, state of charge, and temperature
as a response to a current to calculate the battery state under
the considered load profile. The contributions of this paper are
twofold. First, it illustrates the development of a deep multi-layer
perceptron ensemble for predicting battery behavior in multiple
domains, demonstrating a data-driven method to minimize cost
of computation for complex nonlinear relationships. Second, it
builds the groundwork for a robust data collection method utiliz-
ing HPPC to allow a wide range of model applicability.

2. METHODOLOGY

This section introduces the proposed DNNE and supporting
testing and training methodologies.

2.1 Deep Neural Network Ensemble

The deployment of the DNNE to predict battery state
throughout a load profile is outlined in figure 1. Requiring the
initial voltage, state of charge, temperature, and scheduled ap-
plied current, the model determines the expected change in each
variable to predict the next state. Having been trained on data
of ten second windows, the predicted change in state is over the
next ten seconds of operation, requiring a scaling factor (k), pro-
portional to the step change in time (Af), as seen in equation 1.
Iterating through, after the initial values are used to predict the
first state under load, the input to the model is replaced by the
most recent predicted state for each step

AN

k=—.
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From development to implementation, the process to utilize a
DNNE to predict the battery state for a load profile via HPPC
training is represented in figure 2. While data collection is time in-
tensive up front, HPPC under varied conditions provides a strong
foundation for learning. To minimize tuning efforts, all three
submodels were trained using the Adam Optimizer [12].
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FIGURE 2: The logical flow to develop and employ the neural net-
work for battery state prediction for a given load profile.
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FIGURE 3: The voltage throughout an HPPC protocol every 5%
state of charge with a closer look at the 80% pulse.

To learn and predict complex nonlinear battery characteris-
tics, rather than a single multiple output neural network, an en-
semble of parallel networks was chosen. Separating each model
mitigates overfitting to HPPC training [13], and increases re-
silience to noise as well as unexpected input outliers [14]. Com-
prised of three submodels, one for each output, the DNNE re-
quires four inputs: current (/;), previous voltage (V;_), previous
SOC (SOC;_1), and previous temperature (7;_1), to predict the
change in voltage (AV;), change in state of charge (ASOC;),
and change in temperature (AT;), for each step. Including four
hidden layers, each containing twenty nodes, the input layer of
voltage step submodel receives the current, previous voltage, and
previous SOC. Similarly, the submodel to predict the change in
temperature is a deep neural network; however, it contains three
hidden layers, including 10, 10, and 9 neurons each. The temper-
ature submodel has an input layer requiring the current, previous
SOC, and previous temperature. Both deep neural networks make
use of the rectified linear unit as the activation function to intro-
duce nonlinear relationships between the data, while mitigating
the vanishing gradient problem [15]. Alternatively, the network
used to predict the change in state of charge only receives cur-
rent information. Due to the linear nature of SOC, no hidden
layers were used but is left in the form of a neural network for
consistency.

The batch size and learning rate are key in avoiding over-
generalization and overfitting [16], so the models should be
tuned against constant current test conditions as HPPC training
often highlights dynamic behavior. Once the model is validated,
the DNNE can be employed to instantly predict the battery state
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FIGURE 4: The experimental setup used to collect HPPC data from
three temperature controlled cells simultaneously.

TABLE 1: The amount of HPPC tests run under each condition to
collect training data.

discharge pulse rate
Tamb Cr2 1C 2C
20°C 3 3 3
30°C 3 3 3
40°C 3 3 3

over long term load applications.

2.2 Hybrid Pulse Power Characterization

In this work, HPPC is used to extract the response from an
18650 3.6V 3000 mAh lithium nickel manganese cobalt (NMC)
cell (Samsung 30Q). HPPC is a protocol frequently used to build
physics-based models for its ability to highlight the dynamic char-
acteristics a battery exhibits under load [17]. Shown in figure 3,
the HPPC protocol conducts a discharge and charge pulse at every
5% SOC. Prior to each HPPC test the cells were charged under
a constant current 0.5C, followed by a constant voltage until the
current was less than 0.05C; therefore, it can be assumed that each
protocol was started from 100% SOC. From the discharge pulse,
rate constants can be determined for a physics-based equivalent
circuit model. Developing a data-driven model, this discharge
schedule allows the DNNE to learn the dynamic behavior without
requiring extensive computation of electro-chemical equations.

Monitoring the battery response to HPPC protocol was con-
ducted using the experimental setup displayed in figure 4. To ob-
serve the thermal response, each cell had a thermocouple placed
on the outer center of the cell case using an NI-9210 thermocou-
ple single conditioner at 1 S/s. Electrical data acquisition and
control is conducted through the NHR-9200 battery tester also at
1 S/s. A sampling rate of 1 Hz was chosen to minimize the effect
noise might have during model training, which was further de-
creased to 0.1 Hz during data processing. As outlined in table 1,
HPPC data was collected from three different cells at three pulse
rates of 0.5C, 1C, and 2C, and at three ambient temperatures of
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20°C, 30°C, and 40°C, using an IncuFridge Pro temperature con-
trol chamber. Variable rate and temperature data was necessary
for each neural network to autonomously learn the complex rela-
tionships between the electrical and thermal parameters in order
to build a robust model capable of generalizing to different load
conditions as

1
Qnom

SOC(i) = SOC;_, - J(I(t)dt). )

2.3 Training the Deep Neural Network Ensemble

Raw data contains current, voltage, and temperature data
for each battery, so significant data processing is necessary be-
fore the neural network can be trained. State of charge at each
step (SOC(i)) was calculated via coulomb counting, described by
equation 2, where the current (1(z)) was integrated over each step,
then normalized by the nominal capacity (Q,0m). To determine
the change in SOC, the normalized capacity is then subtracted
from the previous state of charge (SOC;_). Because each neu-
ral network requires target outputs for training, the change in
voltage, state of charge, and temperature for each step was then
appended. Each model was developed using the MLPRegressor
function from the scikit-learn python library, requiring the data
be scrubbed for errors in acquisition such as missing, or infinite
values due to toolkit sensitivities. As the DNNE is not time ori-
ented, all of the data is appended to one file, and used for either
training or validation; however, data collected at 1 Hz proved
too noisy for learning. Windowing the data into 10 s frames
prevented errors due to noise, yet was fast enough to retain the
dynamic behavior of the battery. For each 10 s frame, the average
current, initial voltage, initial SOC, and initial temperature were
input to the model, and it was trained to output the difference in
voltage, SOC, and temperature. Moreover, frames that contained
an average current of greater than -0.9 A were not used in training,
due to voltage relaxation after a discharge producing a positive
change in voltage despite a negative average current.

3. RESULTS

The model showed good agreement between the DNNE and a
Samsung 30Q 18650 lithium nickel manganese cobalt cell under a
1C constant current discharge as reported in figure 5. Under a 1C
discharge, the average absolute error in voltage, state of charge,
and temperature prediction was 0.07 V, 2.35%, and 0.25°C, re-
spectively. The error in voltage and temperature can be attributed
to two primary factors. First, imperfect tuning methods could
lead to avoidable errors in prediction, therefore future work is
required to optimize hyperparameters for deep neural networks.
Second, noise in measurement requiring data windowing makes
it difficult for the model to learn less significant relationships
between variables, which could lead to over-generalization.

It should be noted that, while overestimating its contribu-
tion, the model appears to account for the entropic heating of
the battery, evident by the accelerated temperature increase at
extremely low SOC. By training via an HPPC protocol, designed
to highlight the more dynamic behavior, the neural networks suc-
cessfully captured the nonlinear response exhibited by the battery.
Furthermore, the model succeeds in both domains, also capturing
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FIGURE 5: The a) voltage, b) temperature, and c) state of charge for
a load profile as calculated by the model and tested experimentally.

nonlinearity in the electrical potential, observing both the initial
and final voltage drops.

While able to operate with limited data, the DNNE is cur-
rently unaware to factors that cannot be seen from its input param-
eters. In the experimental data, SOC is calculated via coulomb
counting using the current, and the neural network, acting as a
linear regressor, calculates state of charge via the same method.
However, it was assumed when determining the state of charge for
the training data, that each cell had a perfect 3000 mAh capacity,
when this is unlikely. Differences in the cell history or production
could cause mismatches regarding the assumed nominal capacity,
which the DNNE does not currently account for. In future model
development, it is vital for accurate state of charge estimation that
cells with documented history, or well measured initial capacity
are used to account for differences in usable capacity.
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4. CONCLUSION

This work presented a data-driven framework for model-
ing the electro-thermal response of lithium-ion batteries using a
deep neural network ensemble (DNNE) trained on hybrid pulse
power characterization (HPPC) data. The model predicted volt-
age, temperature, and state of charge under dynamic load condi-
tions, achieving average absolute errors of 0.07 V, 0.25°C, and
2.35%, respectively. By deploying separate neural networks for
each output domain and using windowed training data, the ap-
proach effectively captured nonlinear battery dynamics while re-
ducing computational cost compared to physics-based models.
This framework demonstrated a scalable and efficient alternative
to traditional modeling techniques and established a foundation
for future work in online learning and hybrid physics-informed
architectures.

Future work will focus on implementing an online learn-
ing framework to enable continuous model adaptation as new
operational data becomes available. Additional efforts will in-
clude refining the neural network architecture and expanding the
training dataset to incorporate high C-rate discharge conditions,
thereby improving model generalizability. Hybrid modeling ap-
proaches that integrate physics-based constraints with data-driven
learning will also be explored to further enhance predictive ac-
curacy. These developments aim to extend the applicability of
deep learning in battery modeling and support more robust and
scalable energy storage system optimization.
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