
Accelerating LSTM-based High-Rate Dynamic
System Models

Ehsan Kabir∗, Daniel Coble$, Joud N. Satme$, Austin R.J. Downey$, Jason D. Bakos†,
David Andrews∗, Miaoqing Huang∗

∗Department of Computer Science and Computer Engineering, University of Arkansas, USA
$Department of Mechanical Engineering, University of South Carolina, USA

†Department of Computer Science and Engineering, University of South Carolina, USA
{ekabir, dandrews, mqhuang}@uark.edu, {dncoble, jsatme}@email.sc.edu, austindowney@sc.edu, jbakos@cse.sc.edu

Abstract—In this paper, we evaluate the use of a trained
Long Short-Term Memory (LSTM) network as a surrogate
for a Euler–Bernoulli beam model, and then we describe and
characterize an FPGA-based deployment of the model for use in
real-time structural health monitoring applications. The focus
of our efforts is the DROPBEAR (Dynamic Reproduction of
Projectiles in Ballistic Environments for Advanced Research)
dataset, which was generated as a benchmark for the study
of real-time structural modeling applications. The purpose of
DROPBEAR is to evaluate models that take vibration data as
input and give the initial conditions of the cantilever beam on
which the measurements were taken as output. DROPBEAR
is meant to serve an exemplar for emerging high-rate “active
structures” that can be actively controlled with feedback latencies
of less than one microsecond. Although the Euler–Bernoulli
beam model is a well-known solution to this modeling problem,
its computational cost is prohibitive for the time scales of
interest. It has been previously shown that a properly structured
LSTM network can achieve comparable accuracy with less
workload, but achieving sub-microsecond model latency remains
a challenge. Our approach is to deploy the LSTM optimized
specifically for latency on FPGA. We designed the model
using both high-level synthesis (HLS) and hardware description
language (HDL). The lowest latency of 1.42 μS and the highest
throughput of 7.87 Gops/s were achieved on Alveo U55C platform
for HDL design.

Index Terms—FPGA, LSTM, High-rate dynamics, Flexible,
High-Level Synthesis, Hardware Description Language, RTL.

I. INTRODUCTION

Long Short-Term Memory (LSTM) neural networks are

capable of capturing dependencies for long sequential or

temporal data in applications such as speech recognition,

natural language processing, image captioning, scene analysis,

etc. [1], [2]. In earlier works, such networks have been

shown to be effective in utilizing time-series data to infer

the state of a structure in a high-rate dynamic environment

[3], [4]. The primary goal of this study is to develop a

hardware-based LSTM model to enable ultra-low latency state

estimation applications [5]. High-rate dynamic systems refer

to environments in which structures are subjected to impact

loading that results in accelerations greater than 100 g for

time periods of less than 100 ms [6]. Such systems are

civil structures exposed to blasts, space infrastructures prone

to debris strikes, and aerial vehicles capable of supersonic

flight [7], [8]. Systems exposed to such environments require

rapid response, from event detection to decision-making, in

the sub-millisecond or microsecond scale to ensure safe and

reliable operations [4], [9], [10].

DROPBEAR data [5], [11] was used to come up with a

suitable three-layer LSTM architecture that is trained off-line

in software using logs recorded from the physical DROPBEAR

apparatus. Our model showed an acceptable accuracy in terms

of signal-to-noise ratio and desired latency on a real-time

operating system (RTOS). However, the RTOS is unable to

exploit the available parallelism available within LSTMs. On

the other hand, FPGAs can accelerate inference with low

power consumption using pipelined and parallel processing

elements and are therefore suitable for LSTM implementation.

Thus, a custom accelerator of the trained LSTM model was

designed using both HLS and HDL in this paper. Furthermore,

an implementation on various FPGA platforms was carried out

for performance enhancement and comparison.

The contributions of this paper are:

• Design of an LSTM accelerator framework using

high-level synthesis (HLS) that meets the real-time

requirements set by high-rate applications. Results show

that outermost loop pipelining generates a more efficient

hardware design than outermost loop unrolling of the

algorithm.

• An alternative approach to the accelerator design

using hardware description language (HDL) to improve

performance. Results show that HDL provides the

flexibility to choose the level of parallelism based on the

available resources and timing requirements which not

possible with the HLS-based approach.

• An investigation into model deployment on several FPGA

platforms from Xilinx to determine the best-performing

configuration given the application. We targeted

datacenter platforms such as Xilinx Alveo U55c and

VC707, and an embedded platform, ZCU104. We found

that the additional resources available in the U55C

were unnecessary for the size of the deployed model.

Nonetheless, the U55C’s superior resources allowed

maximum level of parallelism. Both ZCU104 and U55C

boards achieve latency lower than VC707 because they

achieve better frequency. U55C achieved the highest

327

2023 33rd International Conference on Field-Programmable Logic and Applications (FPL)

1946-1488/23/$31.00 ©2023 IEEE
DOI 10.1109/FPL60245.2023.00056

20
23

 3
3r

d 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 F
ie

ld
-P

ro
gr

am
m

ab
le

 L
og

ic
 a

nd
 A

pp
lic

at
io

ns
 (F

PL
) |

 9
79

-8
-3

50
3-

41
51

-5
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
FP

L6
02

45
.2

02
3.

00
05

6

Authorized licensed use limited to: University of South Carolina. Downloaded on December 11,2023 at 02:57:28 UTC from IEEE Xplore.  Restrictions apply. 



frequency of all, but its latency is lower than that of

ZCU104 within the same level of parallelism.

II. MODEL SELECTION

The LSTM model is chosen for a high-rate dynamic system

to predict the real-time response within microsecond latency.

The experimental data known as DROPBEAR was generated

by Joyce et al. [12]. The test setup and data are described in

[4], [13]. Various LSTM models were trained on Python with

Tensorflow and Keras to find a suitable model that meets the

RTOS requirement of 500 μs in a real-time device consisting

of a cRIO-9035 with a 1.33 GHz dual-core Intel Atom (E3825)

manufactured by NI. The number of units per LSTM layer was

varied from 8 to 40 units, each layer having the same number

of units for simplicity. The number of layers was swept from

1 to 3. Fig. 1 shows a large variance in the measurement

of signal-to-noise ratio (SNR) as we vary units per layer,

though the SNR improves with increased number of layers.

The 3-layer configuration with 15 units/layer is chosen in this

paper for FPGA implementation as it has the highest SNR.

The model has 16 input features sourced from the input signal

uniformly sampled across the previous timestep and produces

an output state prediction every 500 μs on RTOS.

Fig. 1. SNRdB values of models with different numbers of cells and units

III. RELATED WORK

LSTMs have been deployed in previous works using HLS

design. For example, work in [14] used HLS pragmas such

as loop unrolling and pipelining to build a real-life speech

recognition system using an LSTM model, whereas [15]

implemented a real-time aircraft anomaly detection system

using small scale LSTM on FPGA. A multilayer LSTM

accelerator template was developed using the HLS tool for

detecting gravitational waves which is a time-series data

produced from LIGO detectors [16]. Low-power LSTM

accelerators are built using pipeline and parallel algorithms

in HLS [17]. Some works dealt with real-time response

applications like electrical fault detection or heart rate

monitoring with LSTM on FPGA after offline construction

of a suitable LSTM architecture on python [18], [19]. Some

HDL-based LSTM accelerators such as a human activity

monitoring system described in [20], provide flexibility of

reconfiguration by adding parameterized features. The same

group also detected artifacts from EEG signals by an LSTM

model on FPGA at a low power and low frequency in

[21]. Another research for healthcare applications reports an

energy-efficient and high throughput real-time human action

detection system [22], where both HLS and HDL-based

RTL modules are combined for the whole system design.

Comparative studies between HLS and HDL-based designs

have been done in the past for applications other than neural

networks [23], [24]. Here, we compared the custom LSTM

designs in both HDL and HLS formats.

IV. HIGH LEVEL SYNTHESIS IMPLEMENTATION

This section describes the high-level synthesis design

technique. The core of the accelerator is designed in C++

language on Vitis HLS 2022.2.1 tool.

There are two main units in the accelerator architecture -

the matrix-vector operations (MVO) unit and the element-wise

operations (EVO) unit. HLS design did not have any function

defined for them. As a result, the exported RTL did not have

separate RTL instances for them. The LSTM gates within the

MVO unit are separately defined as functions with unique

arguments, allowing for the generation of independent parallel

RTL modules. Instead of any distinct functions, the EVO

unit’s operations are expressed as distinct for-loops. Fig. 2

gives a high-level overview of the HLS implementation of

the LSTM accelerator. Each gate can perform multiplication

and accumulation (MAC) operations either in parallel or

sequentially depending on the number of BRAMs. Since

Fig. 2. LSTM Operations for High Level Synthesis Design.

each of the LSTM network layers function in succession,

the gate modules are reused for operations in various

layers. Each gate module contains two for-loops. One loop

iterates over the hidden units. This loop contains two other

distinct for-loops, one for multiplication and the other for

accumulation operations. The other loop inside the function

executes the summing operation with the bias over each

hidden unit before executing the activation function. The main

arguments of the gate functions are the inputs, hidden states,

input weights, recurrent weights, and bias vectors. The array
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partition pragma entirely partitions the vectors of the inputs,

hidden states, and biases to create registers and permit parallel

access because the size of these vectors is small. However,

the vectors for input and recurrent weights are represented as

BRAMs to store a large number of elements. Depending on

the size of the LSTM network and the compiling capacity of

the synthesis tool, they can be partially or entirely partitioned

to generate multiple BRAMs. Large array partitioning slows

down the compilation flow and synthesis process may even

stop. For an easier representation of the multiplication and

accumulation operations of LSTM on HLS, the inputs and

hidden state vectors, as well as the input and recurrent weight

vectors, are concatenated. For fully pipelined operations,

pipeline pragmas were applied on the outer loops of the

functions, which fully unrolled the internal loops, but the

operations were not fully parallel because of the BRAMs. The

number of DSPs used for multiplication appears to depend

on the size of the concatenated vector of inputs and hidden

states. However, they do not start computation at the same

clock cycle even being allocated simultaneously which is a

limitation of HLS. To increase the utilization of DSPs for

parallel multiplications, the outermost loop can be unrolled

by some factors depending on the available resources. The

EVO unit contains several for loops, but all loop operations

are pipelined, and no loop was unrolled.

V. REGISTER TRANSFER LEVEL IMPLEMENTATION

Since RTL provides added flexibility as compared to HLS,

we developed a Verilog implementation of the LSTM and

synthesized it with Vivado 2022.2.1 tool. Fig. 3 shows the

connections of modules in the RTL implementation.

Fig. 3. LSTM Operations for HDL Design

The gate modules and the MVO module are not defined

separately in the HDL design. It aided in reducing connections

between modules that consume extra LUTs. For parallel

execution, the hidden units within each gate are defined as

modules and instantiated multiple times. This module contains

some descriptions of logic operations as well as the instances

of other modules such as a multiplier, adder, and activation

functions. The number of this module to instantiate for each

LSTM gate at the top module is configurable. It indicates a

total number of parallel operations which is shown by unit

parallelism in Fig. 3. We were able to increase the parallel

operations with parallel DSPs in this manner, which was

not possible in HLS. HDL design required parallel DSPs for

the EVO unit. The weights are stored in separate BRAMs

in each hidden unit. As parallel DSPs require input data

simultaneously, the number of BRAM instances grows in

proportion to the number of hidden unit instances. The weights

stored in the BRAMs are first transferred to the registers (w1,

w2,...,w31 in Fig. 3) to facilitate parallel data access. As

the number of DSPs was increased, performance improved

dramatically over the HLS design. Because of the heavy

usage of DSPs, the design becomes crowded, preventing

high-frequency operation. LUT usage rises so that correct data

gets multiplexed to the DSPs. As the size of this LSTM is tiny,

the number of concatenated inputs and hidden states were kept

constant. Only flexibility over hidden units was demonstrated,

but the same flexibility may be extended to inputs as well.

VI. OVERALL SYSTEM

Fig. 4 shows the complete system design for running

the LSTM model on different FPGA platforms such as

VC707 (Virtex-7 XC7VX485TFFG1761-2), ZCU104 (Zynq

UltraScale+XCZU7EV-2FFVC1156 MPSoC) and U55C

(UltraScale+XCU55C-FSVH2892-2L-E) for our experiments.

The overall system was designed on Vivado 2022.1.2 design

suite. It contains a custom IP block for the LSTM accelerator

(LA), which can either be exported from HLS or be built

directly with HDL. The LA has internal BRAMs as shown

in Fig. 2. However, the system design has some external

block ram generator modules for storing inputs, weights, and

outputs. These inputs and weights are fetched from external

DDR3 DRAM or High Bandwidth Memory (HBM). The

outputs are returned to DRAM or HBM. Because of the

limited local memory, the software executing on the CPUs is

also saved on DRAM or HBM.

Fig. 4. Complete System Design

Both VC707 and ZCU104 boards have onboard DRAM

memory, while the Alveo U55C contains HBMs. The DRAM

of VC707 is connected to the programmable logic (PL)

side. It can communicate with the MicroBlaze (μB) softcore

processing system (PS) using a memory interface generator

(MIG) connected by AXI-lite interface. The μB is configured

for the maximum frequency operation [25]. On ZCU104,

we access the onboard DRAM through the ARM-based

Multiprocessor System-on-Chip (MPSoC) subsystem. We used

the same ARM processor to run our LSTM model and check
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the performance only in PS. On U55c, the μB can access

the HBMs. All the boards are connected to the same HOST

PC with USB-JTAG interface. U55C was connected with a

PCIe 3.0×4 interface of another host which is a server with

Intel Xeon CPU E5-2603 v4 @1.70GHz, so that it receives

enough power to run and gets reset signal after power on.

This host can communicate with other IPs except the PS

using the DMA/Bridge Subsystem for PCI Express IP [26]

in the system. PS uses AXI-TIMER to measure the latency

which includes the time between the start and the stop signal

from the custom IP module. The host connected with JTAG

cable displays the results on the terminal using the UARTlite

interface.

VII. RESULTS AND EVALUATION

On three separate platforms with varying levels of

parallelism, results for 32-bit (FP-32), 16-bit (FP-16), and 8-bit

(FP-8) fixed point precision were obtained. Then they were

compared in terms of maximum frequency (Fmax), resource

utilization, latency, throughput, and normalized throughput

[27].

Fmax is reported for the system design in Fig. 4, which

includes all IPs, while resource usage is only reported for the

accelerator. This is because the accelerator is identical across

all platforms, but the overall system design differs among

them. For a fair comparison, the bit lengths of the inputs,

outputs, weights, and intermediate values are maintained the

same in both HLS and HDL designs. The findings for HLS

design reveal that for the same pragmas such as loop unroll,

loop pipeline, and array partition, the number of BRAM

and DSP is different in different platforms and bit precision.

HLS tends to optimize itself regardless of the pragmas in

different platforms. Hence, array partition was done with

different factors on different platforms so that the number of

DSPs remained the same. Despite the reduction in resource

usage and increase in frequency for FP-8, the model did not

automatically utilize the freed-up resources to decrease the

delay. The improvement in frequency resulted in a minor

reduction in latency. To further reduce latency for FP-8,

the design must be updated again. The results in Table-I

compares the effect of pipelining and unrolling the outermost

loop inside each gate. Unrolling the outermost loop entirely

or partially did not enhance performance significantly, even

though resource use, such as DSP, increased by 8×.

TABLE I
HLS LOOP OPTIMIZATION

HLS Designs Platform & Precision DSP
Maximum Latency

Frequency (MHz) (μS)

Loop Unroll Virtex 7 1852 166 6.12

Loop Pipeline Fixed-16 224 250 6.54

On the other hand, the number of DSP can be controlled

in HDL design. Parallelism is increased by increasing DSP

blocks, however doing so leads to congestion in the routing

system, which reduces overall frequency and occasionally

results in no routing at all. As a result, it is important

to carefully manage the amount of parallelism to avoid

drastically decreasing frequency or going over the resource

limit. Although the increment of DSP causes a reduction

of frequency, the performance gets better than that of HLS

designs. The number of DSP depends on the number of hidden

units in HDL. In order to prevent the frequency from declining

and resources from being overused, we reduced the number of

parallelism as the bit width increased up to 32. The results in

Table-III and Table-IV also indicate that after 32-bit precision,

HLS design starts performing better than the HDL design. It is

because DSPs are heavily utilized in HDL design resulting in

frequency decay. Furthermore, as precision rises, more DSPs

for MAC are utilized, causing a resource overflow. As a result,

HDL is unable to maximize parallelism for FP-32 without

sacrificing frequency. Full parallelism can be achieved for

our LSTM model up to 16-bit precision in all the FPGA

platforms except ZCU104 which exceeds available DSPs if

more than 2 unit parallelism is applied. With full parallelism

(15 units for our model), U55C achieves the lowest latency

of all as shown in Table-II. Thus, increasing the parallelism

improved performance more than the HLS design in spite of

the frequency drop.

TABLE II
EFFECTS OF PARALLELISM ON HDL DESIGN

Platform
Bit LUT DSP Highest Fmax Latency

Precision (%) (%) Level of (MHz) (μS)
Parallelism

Virtex 7
FP-32 28 69 4 Units 142 5.78

FP-16 39 72 15 Units 166 2.06

U55C
FP-32 11 38 8 Units 150 2.38

FP-16 9 22 15 Units 250 1.42

For HLS design of FP-8, DSPs were only employed for the

activation functions because DSPs is not used below 10-bit

precision. Although we compelled the use of DSPs for our

multipliers in HDL design by employing Verilog attributes,

their proper sharing could not be obtained which would have

reduced consumption. Only the LUT and FF consumption was

decreased by low bit precision. Thus, FP-8 will be useful

for bigger models. One important improvement with FP-8 is

achieving high frequency, and it helped reduce the latency to

some extent. The total number of operations was determined

for our LSTM model from which the throughput (Giga

operations/second [GOPS]) was computed [27]. For a fair

comparison between HLS and HDL-based design, normalized

throughput both with respect to the LUTs (GOPS/LUT) and

DSPs (GOPS/DSP) was calculated. Same parameters are also

used for a fair comparison with different LSTM models

in other works. HDL design has the flexibility to increase

the resources to maximize throughput. Thus, throughput is

higher than the HLS design in all the platforms. However,

the (GOPS/LUT) and (GOPS/DSP) are higher in HLS design

because it consumes fewer resources. As HLS automates the

majority of optimization procedures, there is little scope to

increase the resources to decrease latency. Table-III reports all
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data related to the HLS design on different platforms. ZCU104

achieves the lowest latency, the highest GOPS, and the highest

GOPS/LUT and GOPS/DSP for all precision.

TABLE III
RESULTS FOR HIGH-LEVEL SYNTHESIS DESIGN

Platform
Bit

LUT FF BRAM 36k DSP
Fmax Latency Throughput GOPS/ GOPS/

Precision (MHz) (μS) (GOPS) LUT DSP

Virtex 7

FP-32 70380 (23%) 86579 (14%) 41.5 (4%) 712 (25%) 210 8.75 1.28 18.19 1.80
FP-16 30532 (10%) 36186 (6%) 22 (2%) 224 (8%) 213 7.4 1.51 49.46 6.74
FP-8 26889 (9%) 20683 (3%) 0 (0%) 30 (1%) 235 6.36 1.76 65.45 58.67

ZCU104
FP-32 78850 (34%) 94936 (21%) 17.5 (16%) 712 (41%) 305 3.74 2.99 37.92 4.20
FP-16 36458 (16%) 39326 (9%) 10 (3%) 224 (13%) 350 2.92 3.83 105.05 17.10
FP-8 23575 (10%) 21590 (5%) 0 (0%) 15 (1%) 400 2.83 3.95 167.55 263.33

U55C

FP-32 64930 (5%) 80191 (3%) 29.5 (1%) 711 (8%) 362 6.86 1.63 25.10 2.29
FP-16 25346 (2%) 31136 (1%) 16 (1%) 224 (2%) 375 4.72 2.36 93.42 10.57
FP-8 23899 (2%) 17422 (1%) 0 (0%) 15 (0.2%) 380 4.65 2.4 100 160.00

Table-IV reports all data related to the HDL design on

different platforms for 2 unit parallelism. The utilization of

LA is the same regardless of the platforms. ZCU104 shows

the best performance among other platforms for HDL design

also. The utilization is higher than HLS design, so latency

was reduced by 1.34×. GOPS/LUT is close to HLS design,

but GOPS/DSP is much lower because HDL design mainly

reduces latency by parallel operations of DSPs. Table-V

TABLE IV
RESULTS FOR HARDWARE DESCRIPTION LANGUAGE SYNTHESIS DESIGN

Platform
Bit LUT FF BRAM DSP Fmax Latency Throughput GOPS/ GOPS/

Precision (%) (%) 36k (%) (%) (MHz) (μS) (GOPS) LUT DSP

Virtex 7
FP-32 17 16 1 43 150 11.48 0.97 19.34 0.81
FP-16 22 23 5 41 166 3.71 3.01 45.19 2.64
FP-8 13 12 5 35 200 3.10 3.61 95.06 3.64

ZCU104
FP-32 22 21 4 69 230 7.11 1.57 31.62 1.31
FP-16 30 29 15 66 250 2.14 5.21 76.69 4.56
FP-8 16 16 15 57 300 1.72 6.50 171.61 6.55

U55C
FP-32 4 4 1 13 250 6.826 1.64 6.83 1.37
FP-16 5 5 2 13 256 2.492 4.48 2.49 3.92
FP-8 3 3 2 11 300 2.108 5.30 2.11 5.34

compares our LA with other LAs on FPGA. Our HDL designs

here are for the highest level of parallelism achieved by the

platforms for FP-16. Since the models are not the same,

all the performance parameters such as frequency, latency,

throughput, and normalized throughput are measured for a

fair comparison. We achieved the lowest latency of 1.42

μS and the highest GOPS of 7.87 with the HDL design

on U55C board running at 250 MHz frequency. Among all

of our HDL designs, it exploits full parallelism and gives

the highest GOPS/LUT and GOPS/DSP. Work [28] achieved

latency closest to ours on VC707 at 140 MHz, but its GOPS is

1.73× lower. The LA in [29] got 1.5× more GOPS/LUT but

3.5× less GOPS than ours because it consumed fewer LUTs.

The HDL design in [30] has the highest GOPS/DSP meaning

it uses fewer DSPs. While its GOPS is comparable to ours,

our slowest HDL design on ZCU104 and our slowest HLS

design on VC707 are, respectively, 3.78× and 1.26× faster

than this. The HLS design performed better on ZCU104 with

the lowest latency and the highest GOPS of 2.92 μS and 3.83

respectively. Since the design consumes fewer resources, the

GOPS/LUT and GOPS/DSP are higher than that of the HDL

design. Both our HDL and HLS designs are respectively 280×

and 136× faster than the ARM Core CPU running at 1.2GHz

frequency.

TABLE V
COMPARISON WITH OTHER LSTM ACCELERATORS

Work Platform Method
Fmax Latency Throughput GOPS/ GOPS/

(MHz) (μS) (GOPS) (LUT*1000) (DSP*1000000)

[14] VC707 HLS 150 390 7.26 38.23 6.17

[15] VC707 HLS 150 4.3 13.45 47 7.77

[16] U250 HLS 300 0.867 17.2 – 1.9

[17] Zynq-7020 HLS 118 18760 0.00977 1.14 0.143

[20] Artix-7 HDL 160 800 0.631 – –

[21] Artix-7 HDL 53 1240 0.055 56 13.75

[29] XC7Z030 HDL 100 – 2.26 98.1 –

[28] VC707 HDL 140 2.05 4.535 31.2 5.06

[30] XC7Z020 HDL 164 9.3 7.51 – 192

[31] ZC7020 – 142 932 1.049 16.96 –

This

ARM Cortex Embedded

1200 398 0.028 – –

Work

A53 C

U55C

HDL

250 1.42 7.87 65.67 3.9

ZCU104 215 2.46 4.56 67 3.99

VC707 166 2.06 5.37 45.5 2.67

U55C

HLS

375 4.72 2.36 93.42 10.57

ZCU104 350 2.92 3.83 105 17

VC707 213 7.40 1.51 49.45 6.7

VIII. CONCLUSION

In this research, we demonstrated a custom LSTM

accelerator on FPGA created using both high-level synthesis

(HLS) and hardware description language (HDL). For a use

case involving high-rate time series data that were dynamically

generated by simulating a ballistic environment, we created a

new three-layer LSTM model. To address the demands for

real-time reaction, the hardware accelerator for this model

was subsequently constructed on an FPGA. Even with the

use of certain directives, the HLS design process produces

an unmanageable circuit despite being quick and simple to

modify. On the other hand, while the HDL design process is

lengthy, it can still result in the intended circuit, and we were

able to manage the degree of parallelism. We contrasted the

two designs’ performance, utility, and adaptability. Then, we

analyzed the differences between the performance, utilization,

and flexibility of the two design strategies. The ZCU104

platform uses the outermost loop pipelining pragma to provide

the lowest latency for HLS design. The outermost loop

unrolling pragma can use more resources (DSP) in HLS, but

it did not achieve latency that was lower than the outermost

loop pipelining pragma. High resource usage may be enabled

for the HDL design. As a result, we could set up the U55C so

that it can fully parallelize our LSTM model, which has the

highest DSP usage. It had the lowest latency at full parallelism

as a consequence. Yet, ZCU104 also outperformed U55C in

HDL design at the same amount of parallelism. Our HLS and

HDL designs are significantly faster than the CPU, according

to experimental findings. In terms of latency, throughput,

frequency, or normalized throughput, the findings further

demonstrate that our approach is better than the majority of

current LSTM accelerators on FPGA.

331

Authorized licensed use limited to: University of South Carolina. Downloaded on December 11,2023 at 02:57:28 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] T. Mikolov, M. Karafiát, L. Burget, J. H. ernocký, and S. Khudanpur,
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