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Aviation’s Environmental Impact

• The Aviation industry accounted for 2.4% of total 

green house gas emissions in 2018.

• The demand for jet fuel is projected to grow from 71 

billion gallons to over 230 billion gallons by 2050, 

emphasizing the need for sustainable solutions.

• Sustainable Aviation Fuel (SAF) offers a 

transformative opportunity, reducing greenhouse 

gas emissions by up to 80% compared to traditional 

jet fuels.

OurWorldinData.org/co2-and-greenhouse-gas-emissions | CC BY



3

Introduction
Materials & 

Methods

Results & 

Discussion
Conclusion

Sustainable Aviation Fuel (SAF) 

• Sustainable aviation fuel (SAF) is a 

biofuel that can be used in place of 

conventional jet fuel to power 

aircraft

• SAF offers a transformative 

opportunity, reducing greenhouse 

gas emissions by up to 80% 

compared to traditional jet fuels.

Svensson, Christian, Amir AM Oliveira, and Tomas Grönstedt. "Hydrogen fuel cell aircraft 

for the Nordic market." International Journal of Hydrogen Energy 61 (2024): 650-663.
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The Case for SAF Detection

• The United States has launched the Sustainable Aviation Fuel 

Grand Challenge aiming to accelerate the production of SAF 

to meet 100% of commercial demand by 2050.

• Accurate detection of SAF ensures:

• Compliance with stringent regulations.

• Achievement of intended environmental benefits.

• Optimization of engine performance.

• Supporting widespread adoption in the aviation industry.

 

Rolls-Royce engine compatible with 100% 
Sustainable Aviation Fuel

Credit: Rolls-Royce
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Team Goals (now and future)

1. Rapidly differentiate between mixtures of petroleum-

derived and renewable jet fuels.

2. Create a cost-effective on-site fuel monitoring system.

3. Develop sensors for advanced engine control, 

potentially for dynamic mixtures of SAF and kerosene. 

Approach: 

• Time domain nuclear magnetic resonance relaxometry 

(TD-NMR) using a CPMG sequence

• Inexpensive compared to High-field NMR spectroscopy 

and portable.
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Typical Current Engine Control

Fundamentals of Aircraft Turbine Engine Control, Dr. Sanjay 
Garg Chief, Controls and Dynamics Branch, NASA
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ARTS-Lab desktop NMR system

• Control handled by LabVIEW program and NI-PXI chassis

• All electronics (barring one amplifiers) housed on a single PCB

• GUI developed for easy data acquisition and export

Extraction of T2 relaxation 

curve using a CPMG sequence
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Permanent magnet array

• N42 cylindrical dipole magnets enclosed by a steel yolk

• 1018 carbon steel caps affixed to magnet surfaces

• Peak flux density of 0.645 T → Larmor frequency of 27.5 MHz

• Temperature shift gradient of -800 ppm/K

Simulation of magnet flux density Magnet dimensions
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RF electronics

• A single 24 V DC power supply required 

• Impedance of all cables and PCB traces matched to 50 Ω

• Waveform generator → sine wave at Larmor frequency

• Pulse generator → CPMG pulse train

• Duplexer (crossed diodes) isolates probe and LNA

General flow

excitation
NMR 

response
amplification mixing filtering
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Signal generation and control

• NI PXI chassis

o Arbitrary waveform generator

o Pulse train generator

o 16-bit digitizer

• CPMG pulse train

o 3955 total pulses

o 90∘ pulse duration is 7 μs

o 𝜏 = 0.625 ms
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𝜏 2𝜏
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Data acquisition

• LabVIEW GUI serves as front end

• Each test comprises 8 scans (average)

• Time for 𝑇2 curve acquisition < 1 min

• Thermocouple used for frequency 

calibration

user adjustable parameters

current scan outputs

averaged relaxation data
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TD-NMR signal and T2

• 𝑇2 relaxation modeled as 𝑀xy(𝑡) = 𝑀0exp(−𝑡/𝑇2)

• Relaxation rate is the reciprocal of relaxation time (i.e., 𝑅2 = 1/𝑇2)

• Linear relationship between 𝑅2 and hydrogen content well established
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Sample preparation

• Fuel mixture sets of Jet A and HRJ Camelina were 

created in 10% mass increments, with each mixture 

totaling 0.3 grams.

• Ex. 0.27 grams Jet A, 0.03 grams HRJ Camelina

• 11 distinct mixtures including pure samples of Jet A 

and HRJ Camelina were probed five times, generating 

a dataset of 55 T2  curves.
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Relaxation rate analysis

• The averaged T2 data is shown in 

figure (a) for 6 different 

concentrations of Jet A and HRJ 

Camelina.

• It was observed that the relaxation 

rates decrease with increasing 

concentrations of Jet A.

more Jet A
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SAF Relaxation rate vs concentration

• Relaxation rates decrease with 

increasing Jet A concentration, reflecting 

a link between composition and TD-NMR 

response.

• A strong linear correlation (R² = 0.9845) 

between measured and synthetic 

relaxation rates confirms TD-NMR's 

reliability for quantifying SAF 

concentrations.
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Predicting mixtures

• Synthetic relaxation curves were generated by superimposing the 

decay curves of Jet A and HRJ Camelina as:

𝑀weighted(𝑡) = 𝐶Jet · 𝑀Jet(𝑡) + 𝐶HRJ · 𝑀HRJ(𝑡),

     where 𝑀Jet(𝑡) is the relaxation curve of Jet A, 𝑀HRJ(𝑡) is the   

jjjjjjjrelaxation curve of HRJ Camelina, and 0 ≤ 𝐶Jet, 𝐶HRJ ≤ 1 are the 

jjjjjjjconcentrations of Jet A and HRJ Camelina, respectively.

•  The top figure shows each sample’s measured R2 value on the 

horizontal axis and the corresponding synthesized value on the vertical 

axis. A linear relationship was found achieving an 𝑅2 of 0.9845.

• Fitting error is shown in the bottom figure and is attributed to human 

error during preparation and mixing small volumes of fuel. 
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Conclusion

• Time-domain nuclear magnetic resonance (TD-NMR) is 

a cost-effective and reliable tool for analyzing 

Sustainable Aviation Fuel (SAF) mixtures.

• The system developed is compact, open-source, and 

adaptable, enabling widespread use across industries.

• High accuracy and linear correlation demonstrate the 

potential for real-time, on-site SAF monitoring.

• Future work includes integrating flow-through systems 

for continuous monitoring and exploring broader 

applications like material science and food safety.

Credit: Envato Elements CC
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THANKS!

https://github.com/ARTS-Laboratory/Compact-NMR 

Our design is open 

source and available 

on GitHub!

Compact-NMR (cNMR)

https://github.com/ARTS-Laboratory/Compact-NMR
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