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Sustainable aviation fuel (SAF) is a promising solution to mitigate the environmental impact
of air travel. Because commercial jets contribute significantly to global greenhouse emissions,
the accurate characterization of renewable and petroleum-based fuel mixtures is essential for
ensuring regulatory compliance. Additionally, the implementation of in-situ fuel sensors allows
for the continuous monitoring of fuel mixtures, enabling real-time quality control and enhanced
engine performance. This paper explores the use of time-domain nuclear magnetic resonance
(TD-NMR) to differentiate between mixtures of Jet A and Hydro-processed Renewable Jet (HRJ)
Camelina. By analyzing 1H TD-NMR relaxation data, we demonstrate a linear correlation
between the decay rate and concentration of Jet A and HRJ Camelina mixtures. The fuel
mixtures were tested using an open-source 1H TD-NMR system developed by the authors that
employs a 0.65 Tesla permanent magnet and operates at a Larmor frequency of 27.68 MHz.
Results show that higher concentrations of Jet A yield slower relaxation rates. Furthermore,
𝑻2 decay rate is shown to vary linearly with fuel composition, with correlation between the
measured and synthesized relaxation rates of 11 mixtures of Jet A and HRJ Camelina achieving
an 𝑹2 value of 0.9845. The TD-NMR approach presented in this work provides a simple and
efficient technique for on-site SAF characterization, an integral step towards facilitating the
greater adoption of SAF and compliance with future regulations in the aviation industry.

I. Nomenclature

𝑇𝐷-𝑁𝑀𝑅 = Time Domain Nuclear Magnetic Resonance
𝑁𝑀𝑅 = Nuclear Magnetic Resonance
𝑆𝐴𝐹 = Sustainable Aviation Fuel
𝐻𝑅𝐽 = Hydro-processed Renewable Jet
𝐷𝐶𝑁 = Derived Cetane Number
𝐶𝑃𝑀𝐺 = Carr-Purcell-Meiboom-Gill
𝑅𝑀𝑆𝐸 = Root Mean Squared Error
𝑅2 = Coefficient of Determination
𝑇2 = Transverse Relaxation Time
𝑅2 = Transverse Relaxation Rate
𝑃𝑋𝐼 = PCI eXtensions for Instrumentation
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II. Introduction
The aviation industry is a significant contributor to global greenhouse gas emissions, accounting for 2.4% of the total

in 2018 [1]. The demand for air travel is growing at a rapid rate, with the commercial jet fuel market predicted to grow
from 71 billion gallons used to more than 230 billion globaly by 2050 [2]. As the market continues to grow, there is a
rising effort to mitigate the environmental impact of aviation. By 2050, U.S. airlines are aiming to reduce carbon dioxide
emissions by 50% compared to 2005 levels. Because low energy density batteries are a distant commercial option,
sustainable aviation fuel (SAF) is a promising solution in the current time frame [3]. SAF has the potential to reduce
greenhouse gas emissions by up to 80% compared to traditional jet fuels, thereby mitigating the aviation sector’s impact
on climate change [4]. To support the use of SAF, the Unites States Federal Government has launched the Sustainable
Aviation Fuel Grand Challenge which aims to accelerate the production of SAF to meet 100% of commercial demand
by 2050 [5].

Detecting the presence of SAF in general aviation fuel, or vice versa, is critical for several reasons, including
regulatory compliance and operational efficiency. Accurate detection ensures that the environmental benefits of SAF
are both realized and verifiable, further promoting SAF adoption. Additionally, regulatory bodies have stringent
requirements and incentives for the use of SAF, making accurate detection essential for airlines to meet these standards
and benefit from their associated financial incentives [6]. Given that SAFs vary in their chemical compositions and
properties, precision fuel detection supports optimal engine function and promotes safety.

Nuclear magnetic resonance (NMR) is an analytical tool that exploits the magnetic properties of atomic nuclei.
While high-resolution NMR spectroscopy is a powerful technique for analyzing the molecular structure of samples,
time-domain NMR (TD-NMR) is a cost-efficient and versatile alternative [7]. Interest in using TD-NMR to directly
probe the chemical properties of fuels has grown due to advancements in low-cost, low-field NMR systems [8]. For
example, by analyzing 𝑇2 relaxation times, Cunha et al. demonstrated that TD-NMR can detect adulteration of disel oil
with kerosene, achieving excellent agreement with standard techniques such as mid-infrared spectroscopy [9]. Similarly,
Rocha et al. developed a rapid and non-destructive TD-NMR-based method for determining biodiesel content in
diesel–biodiesel blends, achieving high accuracing using both univariate and multivariate data analysis procedures [10].
Santos et al. explored TD-NMR as a rapid method for simultaneous assessment of quality parameters in commercial
diesel samples, achieving accurate estimations of cetane index, density, and flash point [11].

The authors have also previously explored fuel characterization using TD-NMR. Martin et al. developed a prototype
compact NMR system that utilizes a permanent magnet along with custom electronics and controls. Using the system,
the initial strength of jet fuel 𝑇2 curves was shown to correlate with hydrogen density, where measurements of hydrogen
content achieved a maximum error of only 0.7% [12]. Huggins et al. proposed the use of TD-NMR in conjunction
with interpretable machine learning to estimate the derived cetane number (DCN) of jet fuels directly from their 𝑇2
relaxation curve. Using a random forest approach, results achieved a root mean squared error (RMSE) of just 0.96 DCN
when predicting on new jet fuel samples [13].

In this work, the use of TD-NMR is explored to differentiate between mixtures of petroleum-derived and renewable
jet fuels. By analyzing trends in the decay rate of 𝑇2 relaxation curves, a linear correlation between the relaxation rate
and composition of fuel mixtures is established. In this study, Jet A POSF 4658 and Hydro-processed Renewable Jet
(HRJ) Camelina POSF 7720 are used for testing. Jet A, which is a kerosene-based fuel, is chosen for its widespread use
in the U.S. aviation industry. HRJ Camelina, which is a SAF derived from Camelina plants [6], is chosen as a SAF
test sample. The contribution of this work is twofold: (1) the demonstration that TD-NMR can effectively quantify
the concentration of Jet A and HRJ Camelina mixtures, marking—to the knowledge of the authors—the first time
TD-NMR has been explored for detecting SAF additives in petroleum-based fuel; and (2) the strong linear correlation
(𝑅2 = 0.9845) established between measured and synthesized relaxation rates over a range of Jet A and HRJ Camelina
mixtures.

III. Methodology
The open-source TD-NMR system used in this work is shown in Fig. 1 and was developed by the authors [14]. All

of the custom electronics, barring a high-power amplifier, are housed on a single printed circuit board. The system
is controlled by a LabVIEW program that interfaces with a National Instruments PXI system utilizing two arbitrary
waveform generators (PXI-5421) and a data acquisition card (PXI-5122). The magnet design achieves a peak flux
density of approximately 0.65 Tesla, yielding to a Larmor frequency of 27.68 MHz. Sample excitation is achieved
using the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence, and the 𝑇2 relaxation curve of a sample is generated by
plotting the peak of each spin echo against time.
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Fig. 1 Full compact TD-NMR system, with key components and subsystems annotated.

For experimentation, two sets of fuel mixtures were prepared in 10% mass increments, with each mixture having
a total mass of 0.3 grams. For example, the samples included mixtures of 0.27 grams of Jet A with 0.03 grams of
HRJ Camelina, 0.24 grams of Jet A with 0.06 grams of HRJ Camelina, and so forth. These mixtures, along with pure
samples of Jet A and HRJ Camelina, were then probed using the introduced TD-NMR system. In total, the 𝑇2 relaxation
curves of 11 distinct mixtures were acquired five times, generating a dataset of 55 individual 𝑇2 decay curves.

To each 𝑇2 relaxation curve, we fit a first-order decaying exponential of the form

𝑀xy (𝑡) = 𝑀0 · exp(−𝑡/𝑇2), (1)

where 𝑀xy (𝑡) is the magnetization at time 𝑡, 𝑀0 is the initial magnetization, and 𝑇2 is the spin-spin relaxation time.
Note that the relaxation rate of a sample, 𝑅2, is just the reciprocal of its relaxation time, i.e., 𝑅2 = 1/𝑇2. To ensure the
accuracy of measured relaxation rates, each 𝑇2 relaxation curve was generated by averaging data from eight individual
scans. Additionally, a low-pass moving median filter was applied to the acquired 𝑇2 curves, removing high-frequency
noise and further improving measurements of relaxation rate.

IV. Results
Fig. 2(a) shows the 𝑇2 curves of mixtures prepared with increasing concentrations of Jet A. These results present the

average of 𝑇2 data acquired from five individual tests. It can be seen that the relaxation rates of the acquired decay
curves decrease with increasing concentrations of Jet A. This observation is reflected in Fig. 2(b), where the relaxation
rates of averaged 𝑇2 curves are plotted against increasing concentrations of Jet A. For reference, the standard deviation
of the measured relaxation rates are marked using black error bars.

To verify that changes in the relaxation rates of the mixtures can be predicted from the samples of Jet A and
HRJ Camelina alone, synthetic relaxtion curves were generated by superimposing the decay curves of Jet A and HRJ
Camelina as

𝑀weighted (𝑡) = 𝐶Jet · 𝑀Jet (𝑡) + 𝐶HRJ · 𝑀HRJ (𝑡), (2)

where 𝑀Jet (𝑡) is the relaxation curve of Jet A, 𝑀HRJ (𝑡) is the relaxation curve of HRJ Camelina, and 0 ≤ 𝐶Jet, 𝐶HRJ ≤ 1
are the concentrations of Jet A and HRJ Camelina, respectively. Fig. 3(a) reports the 11 experimental fuel samples
as blue markers, with each sample’s measured 𝑅2 value on the horizontal axis and the corresponding synthesized 𝑅2
value (obtained from Equation 2) on the vertical axis. A clear linear relationship between the measured and synthesized
relaxation rates is present, with the line of best fit achieving an 𝑅2 value of 0.9845. Fig. 3(b) shows the fitting error
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Fig. 2 Relaxation data for mixtures of Jet A and HRJ Camelina. (a) Averaged 𝑻2 curves from five individual
acquisitions. (b) Averaged relaxation rates against concentrations of Jet A.

Fig. 3 Relaxation rates for both measured and synthetic fuel mixtures. (a) Linear correlation between measured
and synthetic decay rates. (b) Residual fitting error for different concentrations of Jet A.

between each tested mixture and the proposed linear model. The observed errors can be primarily attributed to human
error during sample preparation, specifically to the challenges associated with accurately mixing small volumes of fuel.
Additionally, minor variations in the NMR system, including temperature-induced changes affecting the magnetic field
strength and slight calibration discrepancies, contribute to the overall measurement imprecision.

V. Conclusion
This study demonstrates the effectiveness of TD-NMR in detecting and quantifying SAF within jet fuel blends.

By examining the 𝑇2 relaxation curves of various fuel samples, a strong linear correlation was established between
the relaxation rate and composition of Jet A and HRJ Camelina mixtures. This high degree of linearity, evidenced
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by a 𝑅2 value of 0.9845, indicates that low-resolution TD-NMR is a promising method for distinguishing between
conventional and renewable jet fuels. Given that the ability to accurately quantify SAF concentrations is essential for
meeting regulatory requirements and optimizing engine performance, the proposed TD-NMR approach offers a practical
solution for on-site fuel characterization. Future work will focus on the implementation of flow-through NMR, enabling
the SAF detection process to be streamlined and integrated into fuel distribution networks. Additionally, a broader
range of SAF-based mixtures will be explored, and the sources of error identified in this work will be addressed. The
resulting advancements in fuel detection technology will support the broader goal of reducing the aviation industry’s
environmental impact by promoting the adoption of sustainable fuels.
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