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Introduction

• Levees are human-made embankments built to 

    prevent the overflow of water bodies (e.g. rivers).

• Critical in safeguarding communities and assets 

    From flood damage.

• Typically made of compacted dirt

• Erosion from moving water increases risk of 

    breaching
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Risk Assessment of Levee Breach
• This work is part of a larger effort to 

   develop a data-driven fragility framework 

   for risk assessment of levee breach.

• This presentation will focus on the 

   development of a network of wireless 

   sensing spike packages for soil conductivity 

   levels in levees.

• This work is being done in close 

   collaboration with experts in data-driven 

   assessment, geo-technical, and hydrology.



Conductivity-based Monitoring of a 
Levee

• Goal is to make UAV-

deployable sensor systems.

• Currently working on sensor 

design (deployment comes 

later)
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Open-Source SPECIES Project
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GitHub Repository
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Monitoring using Wireless Sensor 
Network

• A wireless sensor network of sensor nodes is used to 

transmit data directly to a base station hub.

moisture mapping of levee
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Hardware Progress Overview
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Soil Saturation Experiment Setup

• Experimental validation of 

wireless soil saturation 

monitoring system utilizing a 

sand-filled levee model 

constructed within a 

controlled flume environment.
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Soil Saturation Visualization

clustering

kriging

XY plane XZ plane YZ plane



Case Studies #1



IDETC 2025 Paper Focus

• This paper focuses on the 

long-term capability of the 

current wireless sensing spike 

package network.

• The long-term performance is 

important for continuous real-

time in-situ monitoring in 

outdoor environments.
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SPECIES Columbia V0.6.0
• Changes from Mississippi V0.1:

• 3D printed PLA housing + clear PVC 
tube

• Upgraded RF module (external 
antenna)

• Total dissolved solids (TDS) for EC 
measurements

• BME280 for internal environment 
readings
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Experimental Setup

• 6 spikes in a straight line across a levee

• Controlled and monitored 144-hour test



Levee Wetting

• Visualizes Water Paths: Dye 
traces reveal how water infiltrates 
and migrates through the levee 
over time, complementing sensor 
measurements.

• Blue vs. Orange Dye: Incoming 
orange dye pushes out remnants 
of blue dye from a prior test, clearly 
showing new infiltration fronts.
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Experimental data

• Individual Spike Trends: Plots 
electrical conductivity over time for each 
sensing spike during the wetting-drying 
cycle.

• Lower Spikes Retain Moisture: Spikes 
1 and 2, located near the base, record 
elevated electrical conductivity values 
for the longest duration, confirming 
water pooling at the bottom.

• Faster Drying at Higher Locations: 
Spikes 3-6, positioned higher on the 
embankment, show quicker decreases 
in conductivity as water drains 
downward.
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Drying Cycle
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Basis Splines

A B-Spine curve, 𝐶(𝑡) is given by

 𝐶 𝑡 = σ𝑖=0 𝑁𝑖,𝑘 𝑡 𝑃𝑖

where 𝑁𝑖,𝑘 are the basis functions of 

degree 𝑘, 𝑡 is the parametric variable 

and 𝑃𝑖 are the shape-defining control 

points.

B-splines are essentially a series of 

piece-wise polynomial functions used 

to fit non-linear models by dividing the 

dataset using the “knots”, 𝑡𝑖:

𝑁𝑖,0 𝑡 = ቊ
1, 𝑡𝑖 < 𝑡 < 𝑡𝑖+1

0, otherwise

https://commons.wikimedia.org/w/index.php?curid=29082536



Experimental Data

• The conductivity starts high 

as the levee is saturated.

•  Conductivity rapidly drops as 

the water leaves the levee.
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Wireless Sensor Network System Design 
and Field Deployment
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Top Panel: Sensor Node Diagram

Shows a labeled close-up of a wireless sensor node 

highlighting key components include:

Panel (a): Field Deployment

Arrows indicate the formation of a sensor node network.

Demonstrates real-world deployment in an outdoor 

environment.

Panel (b): Single Sensor Node

Provides a close-up view of one sensor node embedded 

in the soil.

Panel (c): Base Station Setup

Shows the base station that receives data from sensor 

nodes.



Key Components Inside Weatherproof 
Compact IoT Base Station Enclosure
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• RF Antenna: Facilitates wireless 

communication with remote sensor nodes.

• Arduino Nano: A microcontroller used for data 

processing and control tasks.

• nRF24L01+ Module: A high-speed transceiver 

designed for low-power wireless data 

transmission.

• Custom PCB: Integrates the Arduino and the 

transceiver for enhanced connectivity.

• Buck Converter: Regulates voltage to ensure 

safe power delivery to components.

• Raspberry Pi: Serves as a central hub for data 

collection, storage, and network management.



Wireless Sensor Network Layout 
Overview

• Monitored Region is square area 
(14m × 14m) enclosed by a 
dashed border, representing the 
sensor deployment zone.

• Six red circular markers labeled 1 
through 6 (excludes node 3).

• Randomly distributed within the 
monitored region

• Base Station represented by a 
white square and located near 
the top-left corner of the region

• Bullet number one

• A second bullet

• A final, third bullet
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• Kriging: geostatistical interpolation method widely used in mining & environmental sciences.

• Based on regionalized variable theory:

• Closer data points are more correlated than distant ones.

• Variance structure captured by a variogram.

Spatial Prediction Using Kriging and 
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• Accounts for global trends (e.g., roughness increases with laser power).

• Captures both broad effects and local variability.

• A spatially continuous process 𝑍 at a location 𝑥 represented as: 

𝑧 𝑥 = 𝜇 𝑥 + 𝜖 𝑥

• In matrix notation, the estimated value Ƹ𝑧 𝑥0  can be solved for as:

Ƹ𝑧 𝑥0 = 𝑞0
T ⋅ መ𝛽 + 𝜆0

T ⋅ ϵ

     where

• 𝑞0 is a vector of the predictors at 𝑥0.

• መ𝛽 is a vector that contains the estimated drift term coefficients.

• 𝜆0 is a vector of n kriging weights determined by the covariance function.

• ϵ is a vector that contains all the regression residuals (solved iteratively). 

Universal Kriging



Soil Conductivity Distribution with 
Sensor Node Placement

• Contour map visualizing soil 
conductivity across a spatial. 

• Color Gradient ranges from 
dark purple (low conductivity) 
to bright green (high 
conductivity).

• Indicates conductivity values 
from approximately 0.045 to 
0.135 S/m.
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Case Studies #3
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Saturation of soil with 
Electrolyte Installed Sensors Existing 4 pin ERI

• Exploration of volumetric water content and electrical 

conductivity of clay, silt, and sand samples in wooden-

framed soil plots.

Sensor-Based Moisture Monitoring 
Across Soil Types



Comparison of Sensor 2 with a 
Traditional ERI
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Traditional vs Sensor Calculated Resistivity

Sensor calculated resistivity Traditional ERI

• Sensor calculated resistivity represented by 

a dark teal line with circular markers.

• Starts at ~30 Ohm·m and remains stable 

until 45 min then sharp drop to ~5 Ohm·m 

between 45–50 min, then stabilizes.

• Traditional ERI method represented by a red 

line with square markers

• Constant resistivity of ~5 Ohm·m throughout 

the entire time range

• Sensor converges after 45 minutes with the 

traditional ERI resistivity, suggesting delayed 

but accurate readings.
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