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Abstract. Ensuring continuous operation of critical infrastructure ne-
cessitates frequent labor-intensive inspections and maintenance. This
study leverages computing and sensing techniques within a Dynamic
Data Driven Applications Systems (DDDAS) paradigm. Specifically, 3D
LiDAR is utilized to capture detailed geometry information. This data
is then analyzed using Topological Data Analysis (TDA) techniques to
gain insights into the health of the infrastructure. The research focuses
on expansive clay terrains over two years during the Summer and Fall
seasons at a site in Jackson, Mississippi. The dataset, part of the Slope
LiDAR embankment (SLidE) dataset, includes 3D point clouds with 1-6
million points per scan. Due to the high computational demands of TDA,
a randomized sampling method is employed to reduce the data size from
millions to thousands of points, ensuring efficient analysis without com-
promising accuracy. Results highlight the deformation of expansive clays,
known for their shrink-swell behavior in response to moisture changes,
which poses significant geotechnical challenges. These findings are cru-
cial as climate change with increased precipitation, affects the stability
of earth-constructed embankments. By capturing dynamic soil behavior
through seasonal 3D scanning, the study provides insights into deforma-
tion patterns. The approach balances rigorous data representation with
manageable computational demands, revealing a 2.35% seasonal varia-
tion in slope geometry; potentially correlated with moisture levels.
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1 Introduction

Ensuring the safety and reliability of critical infrastructure is a priority in modern
civil engineering, especially for transportation networks. Traditional inspection
and maintenance tasks are labor-intensive and pose significant risks to human
technicians, making the adoption of non-invasive methodologies increasingly im-
portant. Expansive clay terrains present particular geotechnical challenges due
to their shrink-swell behavior in response to moisture variations [9]. These soils,
which can undergo significant volume changes, pose a persistent threat to the
stability of structures such as highway embankments. The dynamic nature of
expansive clays, exacerbated by climate change and associated shifts in precipi-
tation patterns, necessitates continuous monitoring to prevent potential failures.

Generally, traditional methods are employed to assess the condition of em-
bankments [11], including collecting soil samples from the subsurface and sub-
jecting them to laboratory tests to determine their physical and mechanical
properties, such as grain size distribution, Atterberg limits, shear strength, and
compressibility. In-situ tests, like the standard penetration test, cone penetra-
tion test, and vane shear test, are also conducted on-site to evaluate soil prop-
erties and strength parameters. These destructive techniques are labor-intensive
and costly. To overcome the limitations of these destructive techniques, various
non-destructive methods have been developed for geotechnical monitoring [6].
Inclinometers, which measure lateral soil movement, are installed vertically in
boreholes to detect slope movement. Piezometers are used to monitor pore wa-
ter pressure within the embankment, as high pore water pressures reduce soil
strength and trigger failures. In recent years, technologies such as electrical re-
sistivity imaging, ground-penetrating radar, and remote sensing techniques have
been increasingly utilized to inspect and provide data on large areas.

Leveraging novel computing and sensing technologies, such as 3D LiDAR and
Topological Data Analysis (TDA), offers promising solutions by providing de-
tailed insights into infrastructure health with minimal human intervention. TDA
is ideal for identifying global and local data structures, making it suitable for an-
alyzing intricate deformation patterns of expansive clays. However, TDA’s high
computational demands, with an O(n3) time complexity [5], require innovative
data processing approaches. Others have explored accelerating TDA by clearing
birth columns when reducing the boundary matrix under specific conditions [3].
This work seeks a robust data-processing method that limits preconditions.

This paper presents a novel application of TDA to the monitoring of earthen
embankments made from expansive clay by employing a randomized sampling
strategy to reduce computational load while preserving analytical accuracy. To
do so, this work leverages the open-source Slope LiDAR embankment (SLiDE)
dataset [8] introduced in prior works by the team [15]. The SLiDE dataset con-
tains 3D LiDAR scans of an embankment along the Terry Road Exit from I-20 in
Jackson, Mississippi, over multiple seasons across several years. The contribution
of this work is twofold. First, it proposes a computationally efficient TDA ap-
proach based on randomized consensus. Second, it demonstrates the effectiveness
of TDA in detecting the shrink-swell behavior of expansive clays.
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Fig. 1. A proposed Dynamic Data Driven Applications Systems (DDDAS) framework
to enable dynamically optimized 3D LiDAR sensing and TDA-based data processing
for enhanced and efficient monitoring of earthen embankments

1.1 DDDAS for Intelligent Slope Monitoring

The Dynamic Data Driven Applications Systems (DDDAS) paradigm [1] of-
fers the potential to dynamically optimize 3D LiDAR sensing and TDA-based
data processing for enhanced and efficient monitoring of earthen embankments.
DDDAS offers a transformative approach to infrastructure monitoring, particu-
larly for geotechnical applications such as slope stability analysis. DDDAS inte-
grates real-time data acquisition with computational models, creating a feedback
loop that dynamically updates simulations based on incoming data and, con-
versely, guides data collection efforts based on the evolving state of the system.
This approach enhances the accuracy, responsiveness, and efficiency of monitor-
ing and analysis processes. For example, Parida et al. [10] developed a DDDAS
method for structural analysis of performance-based earthquake engineering.
The method involves data fusion estimation, soil modeling, and machine learn-
ing to assist in bridge structural integrity

A proposed DDDAS-based process is shown in Figure 1 where data collected
over seasons can be analyzed and saved. The historical information can drive
the allocation (when and where) of limited instrumentation (i.e. a set number
of LidAR scanning systems). Combining the historical data with the real-time
collections in the DDDAS paradigm affords effective physical interpretation of
changes in soil moisture and knowledge of any short-or-long term changes in
the embankment to support transportation agencies in making mitigating ac-
tions. The integration of DDDAS with this monitoring setup involves several
key components:
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1. Real-Time Data Integration: Continuous LiDAR scanning provides up-to-
date geometric data, which is immediately integrated into computational
models which ensures that the models reflect the current state of the slope.

2. Adaptive Modeling: The computational models adapt based on the incoming
LiDAR data. For example, if the models detect significant changes in slope
geometry indicative of potential instability, they can trigger more frequent
or detailed data collection in the affected areas.

3. Enhanced Decision-Making: The insights gained from the models, which now
incorporate the latest data, enable more informed decision-making. This can
include directing maintenance efforts to areas showing early signs of defor-
mation or instability, thereby preventing more severe issues.

4. Resource Optimization: By focusing data collection and analysis efforts on
critical areas identified by the models, DDDAS optimizes the use of resources,
reducing unnecessary data processing and focusing attention where needed.

2 Methodology
This section introduces the SLidE Dataset and the TDA processing technique.

2.1 SLidE Dataset
The SLidE Dataset is publicly available [8] and was initially reported by Zo-
huruzzaman et al. [15]. SLidE contains multiple LiDAR scans of an earthen
embankment along the I-20E exit toward Terry Road in Jackson, Mississippi
(32°16’-48.92"N, 90°12’44.03"W) [7]. This location was chosen due to its ge-
ological composition predominantly consisting of Yazoo clay, a high-plasticity
soil known for its challenging shrink-swell behavior. The dataset spans multiple
years, with LiDAR scans conducted at different time intervals between Summer
2021 and Fall 2023, enabling the analysis of seasonal variations in the embank-
ment’s stability and deformation patterns. The 15 ft. high slope, depicted in
Figure 2, has a grade ranging from 3.5:1 to 4:1 (V:H). The slope experienced
shallow landslides in the past, which were remediated using steel H-piles. It now
consists of reinforced and as-built sections, primarily composed of Yazoo clay.

Fig. 2. The earthen embankment monitored in the SLidE Dataset that is located on
Terry Road near the I-20 East exit in Jackson Mississippi, showing: (a) satellite image
of the reference slope (base image credit Google Earth), (b) an aerial view of the slope
taken from the North-East side of the slope.
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Fig. 3. LiDAR point cloud surface topography of the monitored embankment from
scans conducted between 2022 and 2023.

The dataset includes dense point cloud data collected from multiple LiDAR
scans over several years, creating a 3D surface and topography of the slope.
Scans were conducted at five to six stations using Terrestrial LiDAR equipment
(Trimble X7), generating around 20 million points. The data was digitally pro-
cessed using Trimble RealWorks software to create a unified point cloud with
approximately 12 million points, which includes various infrastructural features
like the adjacent highway and bridge. Additional processing with Autodesk Re-
Cap removed unrelated elements like road signs, foliage, and personnel. The
dataset is available in the compressed ‘LAZ’ format, a standard for 3D point
cloud data. It was converted from e57 format to LAZ using the e57tolas tool
from the LASTools software collection, preserving the original point-source IDs.
Some point clouds from the public repository are shown in 3. For simplicity,
this work leverages the four most recent LiDAR scans in the SLidE Dataset,
consisting of scans taken in February and November 2022 along with scans from
June and September 2023.

2.2 Topological Data Analysis
TDA is a field with broad scientific impacts originating from studies in applied
algebraic and combinatorial topology along with computational geometry. TDA
is motivated by the idea that topology and geometry expose qualitative and
quantitative global features of data through local behavior and characteristics,
which are stable under small perturbations. Its objective is to supply rigorous
mathematical and statistical algorithmic methods that yield meaningful analyt-
ics when applied to topological and geometric structures of significant complex-
ity by measuring, recording, and tracking linear representations of an underlying
data set. Often these data sets are point clouds embedded in Euclidean or some
more general metric space where a defined notion of distance exists.

Computational topology drives the field of TDA. The workhorse and most
successful of its methodologies is persistent homology (PH). PH is a data com-
pression scheme quantifying critical points of continuous spaces and addressing
more general notions of multi-scale characteristics, high-dimensional features,
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and abstract data structures with the use of discrete metrics. The reader can
find foundational details of TDA and PH in Edelsbrunner and Harer [4]. In sum-
mary, these characteristics make TDA and PH an attractive choice for digital
applications where its implementations has brought numerous results [2,12,13].
The approaches addressing autonomy in infrastructure health introduced in this
paper are inspired by Paul Schrader’s work and recent TDA-based algorithmic
successes detailed in [12]. There he applied TDA and PH to automatic target
recognition derived from multimodal sensor data and its fused aggregates.

TDA is a valuable approach to capture the local and global properties innate
to 3D point clouds. However, one major problem of TDA is its prohibitively
high computational demands: to collect all possible cycles and spheroids from
all possible subsets, the current TDA algorithm needs O(n3) time complexity,
where n is the number of points in the point clouds [5]. In the SLidE Dataset
dataset, n ranges between 1 to 6 million, which is computationally infeasible to
apply TDA directly on all n points. As done in other image or video processing,
the statistical redundancy existing in natural image data should be exploited
to release the prohibitive computation involved. By observation, the dense 3D
points in our dataset, as depicted in Figure 3, exhibit spatial redundancy. To take
advantage of this, the proposed approach uses random sampling to reduce the
computation needed for TDA and PH evaluation. For each of the given point
clouds, instead of using n points, we randomly draw m = 5000 to be fed to
the TDA algorithm for analysis, the associated computing cost O(m3) is now
entirely feasible. There are many different TDA parameters/metrics to capture
the global properties of a 3D point cloud. Through empirical investigation, we
chose the Persistence Entropy (PE) metric for H0 and H1 [5]. As a result, each
point cloud is represented by a 2D point cloud of ordered pairs (H0, H1).

To further eliminate the possible bias in the random sampling, each random
sampling of m samples is performed 10 times and the median values of the
TDA PE parameters are taken to be the TDA results, which mimics a typical
RANSAC (RANdom SAmple Consensus) procedure. The computing procedure
RANSAC-TDA for point cloud n is thus summarized in Algorithm 1:
Algorithm 1 Pseudo code for the proposed RANSAC-TDA methodology.
1: procedure RANSAC-TDA(n)
2: for K times do
3: Randomly sample a subset mi of 5000 points from point cloud n
4: Compute vi = PE(mi)
5: end for
6: return median(vi)
7: end procedure

3 Results and Discussion
RANSAC-TDA algorithm results are shown in Figure 4, indicating that the June
2023 LiDAR scan has an H1 entropy 2.35% different from the average of the other
three scans. These findings align with the author’s earlier curvature histogram-
based method [15], supporting the hypothesis that changes in H1 entropy are
likely due to increased moisture in the slope during summer.
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We conducted our RANSAC-TDA algorithm to four 3D point clouds with a
casual desktop (CPU: i9-13900, RAM: 64 GB) in Python 3.10 with the giotto-
tda package [14]. In our test, the repeated time in the RANSAC-TDA algorithm
K is chosen to be 10. On average each run of the RANSAC-TDA for one point
cloud takes 69.0 sec. We also inspected the K=10 different vi’s, where the 10
different PE metrics are mostly similar, indicating that the spatial redundancy
of the point clouds is innate. Thus, random sampling reducing the original 3D
point cloud data count by 2-3 orders of magnitudes can still yield a valuable
consensus while decreasing the TDA compute load.

Fig. 4. Results for the TDA analysis in the H1 and H2 plane where the red arrow
denotes the passage of time. June 2023 is an outlier in terms of H1 entropy, likely
caused by the increased moisture present in the slope during the summer.

4 Conclusion
In this work we endeavor to use powerful Topological Data Analysis (TDA) ap-
proaches to analyze the 3D point clouds. To avoid the prohibitively high comput-
ing cost, O(n3), demanded by TDA, we resorted to a random sampling consensus
algorithm to reduce the time complexity by several orders of magnitudes: from
millions to thousands, which renders the corresponding computing feasible and
efficient. To our knowledge, this is the first time TDA was conducted on a real
infrastructure dataset considering computing efficiency and performance. The
team is currently in the process of collecting more data with corresponding in
situ sensor measurements to more rigorously evaluate the proposed RANSAC-
TDA algorithm algorithm.
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