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Data Assimilation in a Modelica 

Framework for Optimizing Battery 

Longevity in Electric Aircraft



➢ Electric aviation offers 

clear advantages over 

traditional planes for 

short distance flights

➢ Reduced noise pollution

➢ Electric motors require 

minimal maintenance
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Introduction

Image credit: https://www.pipistrel-aircraft.com/wp-content/uploads/2023/04/skica-motor-in-baterije.jpg



3

The Velis Electro

➢ Manufactured by Slovenia’s Pipistrel

➢ Short range (50 minute plus reserve) 

trainer aircraft

➢ First (and only) electric aircraft to be 

certified by the European Union Aviation 

Safety Agency since 2020

Image credit: https://www.pipistrel-aircraft.com/wp-content/uploads/2024/07/249A8817-1-2048x1366.jpg

Image credit: Pipistrel Velis Pilot’s Manual, June 2020

➢ Also certified in Mexico and the UK

➢ Received light-sport airworthiness 

exemption from FAA in 2024
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Velis Electro Powertrain

➢ Carries two stacks of 1152 Samsung INR 

18650-33G cells in a 96S12P configuration

➢ ~13.06 kW-hr per stack, or 26.12 kW-hr 

total; advertised at 20 kW-hr

➢ Estimated 500 flight hours between 

overhauls

Image credit: 

https://www.pilotspost.com/articles/200718PipistrelVelisthefirstevercertifiedelectricaircraft/03.jpg

➢ Coupled to an Emrax 268 AC motor and 

emDrive H300C power controller

➢ Maximum load 400 A-rms; constant 

load 190 A-rms

➢ Estimated 2000 flight hours between 

overhauls

Image credit: https://www.planeandpilotmag.com/uploads/2020/08/pipistrel-velis-

electro-motor-640x480.jpg?auto=webp&optimize=high&quality=70&width=1920



➢ Battery life span key factor in economic 

viability

➢ Fast charge cycles required to maintain 

availability

➢ High power application in-flight

➢ Furthermore, premature failure of a 

single stack desynchronizes battery 

maintenance cycles

➢ Especially important for Velis Electro; 

liquid-cooled power train precludes easy 

replacement
5

Electric Aviation Economics



➢ Digital twins and load sharing agents represent a possible 

way to track and manage battery health

➢ Ex: algorithm developed by Anthony et al. splits the load to 

equalize the RUL over time
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Objectives

➢ Goals:
➢ Model the battery system of an 

electric aircraft in OpenModelica

➢ Apply a simple load sharing agent 

to a generic flight path to 

demonstrate the flight hours 

recovered
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OpenModelica Modeling

➢Open-source multi-

physics package 

based on the Modelica 

language

➢Four main components

➢Two battery stacks, 

“stack1” and 

“stack2”
➢ “loadsplitter” block

➢ “flight_cycle” block
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Experimental Setup for Battery Characterization

➢ Batteries characterized based on discharge test data provided 

by the University of South Carolina Adaptive Real-Time 

Systems (ARTS) Laboratory

➢Tested via NHR 9200 

Battery Test system 

controlled by LabView

➢Cells kept in temperature 

chamber; maintained 

constant 20C ambient
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Thermal and Mechanical Analysis of Battery Cells

➢ Samsung INR 18650-30Q cells the lab’s 

current standard

➢ Similar specifications and chemistry 

to the 33G

➢ Primary difference is higher 

charge/discharge currents

➢ Tested in temperature control chamber 

maintained at 20⁰C
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Voltage-Discharge Profiles for Model Validation

➢ Each cell discharged in 

increments of 10% SOC 

using 6 A pulses

➢ Resulting data curve-fitted to 

find the coefficients of the 

empirical relation:

𝑂𝐶𝑉
= 𝐾0 + 𝐾1𝑆𝑂𝐶 + 𝐾2 ln 𝑆𝑂𝐶 + 𝐾3 ln 1 − 𝑆𝑂𝐶

➢ Internal resistance calculated 

from Ohm’s Law: ~0.162 Ω
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Load Splitting Agent

➢Splits total current load 

proportionately based on 

each cell’s remaining 

useful life

➢Limited to initial RUL’s of 

greater than 50%



➢ Discharged via a generic flight profile

➢ 65 kW peak power (~80 A), 40 kW (~60 A) cruising power

➢ Charged at a constant 10 A per stack (0.265C) until both stacks reach 

90% SOC
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The Generic Flight Cycle

➢ Taxi, takeoff, and cruise times 

all user-defined

➢ Neglected taxi periods in 

simulation

➢ Take off limited to 90 sec. 

per manual

➢ Cycled until one or both 

stacks reach their end of life



➢ 33 total simulation cases

➢Five initial RULs for partially degraded stack, from 90% to 

50%; opposite stack always begins at 100% RUL

➢Three different discharge times: 10, 30, and 50 minutes

➢Each RUL/discharge time combination simulated with and 

without load sharing

➢ Sum total flight time and compare

➢Three special cases: each stack begins at 100% RUL for 

comparison with manufacturer
13

Simulation Scheme
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Results (10-minute test)

➢ Base Case: ~500 flight hours for 10-minute flights.

➢ With Load Splitting:

➢ Flight time recovered by ~50% of losses.

➢ Gains increase with greater initial degradation of the secondary battery.

➢ Observation: Recovery improves as battery RUL decreases, showing 

consistent algorithm performance.
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Results (30-minute test)

➢ Base Case: Flight hours reduced by 7.6% compared to 10-minute flights 

due to higher discharge.

➢ With Load Splitting: ~40% of lost flight time recovered, consistent across 

RUL values.

➢ Observation: Gains are slightly lower than for 10-minute flights but still 

effective under moderate discharge.
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Results (50-minute test)

➢ Base Case: Further reduction in flight hours by 5.75% compared to 30-

minute flights and significantly lower than 10-minute flights.

➢ With Load Splitting: Recovery effective but reduced, ~30% gain for 

highly degraded batteries (0.5 RUL).

➢ Observation: Gains diminish under high discharge, highlighting 

algorithm limitations with highly degraded batteries.
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Conclusions

➢ Algorithm Benefits:

➢ Extended battery life, up to 50% more flight hours for 10-minute flights.

➢ Reduced battery replacement frequency, lowering costs and downtime.

➢ Performance Insights:

➢ 30-minute flights showed moderate reductions with strong recovery.

➢ 50-minute flights had larger reductions and diminishing gains, revealing 

algorithm limits under high discharge.

➢ Future Work:

➢ Improve algorithm for degraded batteries and high-discharge cases.

➢ Explore partial recharges, varied charge rates, and operational 

irregularities.
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