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Systems experiencing high-rate dynamics involve accelerations > 100 gn (gn = 9.81 𝑚𝑚
s2

) within 1 ms. 

Examples

Introduction to high-rate systems
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Systems experiencing high-rate dynamics involve accelerations > 100 gn (gn = 9.81 𝑚𝑚
s2

) within 1 ms. 

Examples

Large uncertainties in external loads

High levels of non-stationarities in the 
structure and heavy disturbances

Unmodeled dynamics from changes in 
system configuration

Characteristics

Introduction to high-rate systems
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Problem definition
Current State Estimation Models
• Forecasting Models: Predict future states based on past data patterns.



5
re

sp
on

se

hidden

time

features

model

𝑆̂𝑆

re
sp

on
se

hidden

time

features

model

measurable

state

state

measurable

Problem definition
Current State Estimation Models
• Forecasting Models: Predict future states based on past data patterns.
• Hidden State Estimation Models: Estimate unobserved (hidden) internal states of the system that drive its behavior.
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Problem definition
Current State Estimation Models
• Forecasting Models: Predict future states based on past data patterns.
• Hidden State Estimation Models: Estimate unobserved (hidden) internal states of the system that drive its behavior.

Limitation: lack effective uncertainty quantification.

Proposed solution: develop a probabilistic machine learning pipeline that integrates Topological Data Analysis (TDA) to 
enhance feature extraction, state estimation, and uncertainty quantification (UQ).
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(MC) dropoutPreprocessing

Trained state 
estimator

Probabilistic 
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𝑆𝑆 𝑆𝑆ub
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confidence

High 
confidence

Online 
Data
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Data
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TDA is a method that studies the shape and structure of data by identifying patterns and features that persist 
across multiple scales. 

TDA Pipeline

Data Topological 
Shape

H0 = 2
H1 = 0

Topological 
Feature

Analysis

Generating Datasets: Topological Data Analysis (TDA)
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Topological shapes
Simplex: A simplex is the building block in topological data 
analysis. It’s the simplest possible geometric object that 
represents a relationship between points

Point
(0-simplex)

Tetrahedron
(3-simplex)

Line
(1-simplex)

Triangle
(2-simplex)

Collection of simplexes
(simplicial complexes)

Generating Datasets: Topological Data Analysis (TDA)
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Topological shapes
Homology: is a concept in topology that helps identify and categorize holes or voids within a topological space. 

Holes
H1

Connected 
Components

H0

Void
H2

H0, H1, H2 are the homology groups that capture different dimensional features of a topological space

Generating Datasets: Topological Data Analysis (TDA)
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Persistent Homology is a technique in Topological Data Analysis (TDA) that captures and analyzes the topological 
features of data across multiple scales or resolutions. It helps in understanding how these features persist as the data 
is viewed at different levels of detail.

H0 : Connected Components
H1 : loops or cycle

Persistence DiagramPoint Cloud Data Connected Component

Filtration
Record 
changes

0.31𝜀𝜀 = 0.31

0.31

Generating Datasets: Topological Data Analysis (TDA)
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21

R
aw

 D
at

a

Sc
al

in
g 

Delay vector 
embedding TDA

Topological Data Analysis (TDA) Feature Extraction
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Delay vector 
embedding TDA

Input Output

Input: 11 TDA Features
Output: State at time t (S)

Topological Data Analysis (TDA) Feature Extraction
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Methodology Overview: Baseline Comparison

Model
Monte Carlo 

(MC) dropoutPreprocessing Feature Extraction

Trained state 
estimator

Probabilistic 
predictions

𝑆𝑆 𝑆𝑆ub

Low 
confidence

High 
confidence

Online 
Data

𝑆𝑆lb

Offline 
Data

𝜒𝜒 𝑡𝑡 = 𝑥𝑥 𝑡𝑡 , 𝑥𝑥 𝑡𝑡 − 2𝜏𝜏 , … , 𝑥𝑥 𝑡𝑡 − 𝑑𝑑 − 1 𝜏𝜏

𝜏𝜏: Time delay
𝑑𝑑: Embedding Dimension
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Training with Dropout

Epoch 1

⋮

Epoch N

𝐱𝐱

𝐱𝐱

𝑦𝑦

𝑦𝑦

Monte Carlo (MC) Dropout
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Training with Dropout

Epoch 1

⋮

Epoch N

Inference with Dropout

Forward 
pass 1

⋮

Forward 
pass M

�𝑦𝑦1

�𝑦𝑦𝑀𝑀

�𝑦𝑦 ~ 𝑁𝑁(𝜇̂𝜇, �𝜎𝜎2)

𝐱𝐱

𝐱𝐱

𝑦𝑦

𝑦𝑦 𝐱𝐱

𝐱𝐱

Number of forward passes (M)
Number of layer
Number of neurons
Activation function

Hyperparameters

Monte Carlo (MC) Dropout



DROPBEAR experimental testbed:
The Dynamic Reproduction of Projectiles in Ballistic 
Environments for Advanced Research (DROPBEAR) 
was used to generate the experimental data.

Capabilities:
Reproduce fast boundary condition changes.
Mimic rapid mass changes.
Simulate the rapid dynamics typical of high-rate events.

DROPBEAR Dataset 2 experimental video

Case Study : DROPBEAR Dataset
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Austin Downey, Jonathan Hong, Jacob Dodson, Michael Carroll, and James Scheppegrell, 
“Dataset-2-dropbearacceleration-vs-roller-displacement,” Dec. 2021. [Online]. 
Available: https://github.com/High-Rate-SHM-Working-Group/Dataset-2-DROPBEAR-
Acceleration-vs-Roller-Displacement

https://github.com/High-Rate-SHM-Working-Group/Dataset-2-DROPBEAR-Acceleration-vs-Roller-Displacement
https://github.com/High-Rate-SHM-Working-Group/Dataset-2-DROPBEAR-Acceleration-vs-Roller-Displacement
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Training and validation Testing

Case Study : DROPBEAR Dataset
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Case Study : Results

Result using TDA features as input

Result using Delay vector as input
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Case Study : Results
Metric Used
• Mean Absolute Error (MAE): Measures average absolute error between predicted and actual values.
• Time Response Assurance Criterion (TRAC): Assesses the correlation between predicted and actual time-series data.
• Signal-to-Noise Ratio (SNR): Indicates the model's accuracy by comparing signal strength to noise level.
• Expected Confidence Error (ECE): Evaluates the accuracy of the model's predictive uncertainty. 

Data Type MAE (%) TRAC (%) SNR (dB) (%) ECE (%)

Standard 13.2 -0.1 3.2 60.3

Stepwise - 10 16.7 -0.1 2.4 13.1

Stepwise - 30 15.9 -0.2 0.2 72.6

Stepwise - 60 13 -0.2 -0.7 73.6

Random 12.1 0 3.3 47.6

Average 14.2 -0.1 1.7 53.4
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Case Study: Practical Applications
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Use case 1: proxy for error Use case 2: anomaly detection 
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Summary
Key Outcomes:
• Increased accuracy and reliability in high-rate state estimation.
• Enhanced feature extraction through TDA integration.
• Improved state estimation with robust uncertainty quantification (UQ).
• Better decision-making based on prediction confidence.

Future Work:
• Stabilize metrics for the probabilistic model by addressing run-to-run variation.
• Explore additional optimization and generalization methods for the proposed 

machine-learning pipeline.
• Incorporate forecasting capabilities into the probabilistic model. 
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Time series to point cloud: Use delay vector embedding.
𝝌𝝌 𝑡𝑡 = 𝑥𝑥 𝑡𝑡 , 𝑥𝑥 𝑡𝑡 − 𝜏𝜏 , 𝑥𝑥 𝑡𝑡 − 2𝜏𝜏 , … , 𝑥𝑥 𝑡𝑡 − 𝑑𝑑 − 1 𝜏𝜏

Parameters:
• 𝜏𝜏 = Time delay
• 𝑑𝑑 = Embedding dimension

Generating Datasets: Conversion to Point Clouds
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• Moving the Cart in Incremental Steps:
– Utilizing step sizes of 10, 30, and 60.
– Each configuration comprises 10 trails.

Case Study : DROPBEAR Dataset – Testing
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Delay Vector TDA Features

Data types MAE (mm) TRAC SNR (dB) ECE (%) MAE (mm) TRAC SNR (dB) ECE (%) 

Standard 8.92 0.9875 18.15 22.03 7.74 0.987 18.73 8.75

Stepwise - 10 8.24 0.994 21.05 6.35 6.86 0.9933 21.55 5.52

Stepwise - 30 8.81 0.9938 20.75 10.8 7.41 0.9921 20.8 2.96

Stepwise - 60 9.53 0.9931 20.26 12.98 8.29 0.9909 20.11 3.43

Random 7.95 0.9905 19.65 11.76 6.99 0.9906 20.29 6.16

Case Study : Results
Metric Used
• Mean Absolute Error (MAE): Measures average absolute error between predicted and actual values.
• Time Response Assurance Criterion (TRAC): Assesses the correlation between predicted and actual time-series data.
• Signal-to-Noise Ratio (SNR): Indicates the model's accuracy by comparing signal strength to noise level.
• Expected Confidence Error (ECE): Evaluates the accuracy of the model's predictive uncertainty. 
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