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Abstract. High-rate systems refer to structures that undergo rapid
changes, exhibiting dynamics that undergo changes in short durations,
often less than 100 milliseconds. Examples include hypersonic vehicles,
active blast mitigation, and ballistic packages. Developing feedback con-
trol systems requires state estimations that can be updated on timescales
of less than one millisecond. However, due to the nonlinear and non-
stationary dynamics of high-rate systems, they entail high uncertainties,
posing challenges for predictive modeling. In this study, we propose a
probabilistic machine-learning pipeline for estimating the state of a high-
rate system. This approach involves applying probabilistic models and
topological data analysis techniques to extract features from the datasets
obtained from the Dynamic Reproduction of Projectiles in Ballistic En-
vironments for Advanced Research (DROPBEAR) testbed. We examine
the design of probabilistic models for structure state estimation, empha-
sizing the importance of prediction intervals. We evaluate the best model
through several performance metrics, such as mean absolute error, Signal
to Noise Ratio, and Time Response Assurance Criterion while assessing
the quality of predictive uncertainty by creating uncertainty calibration
curves and calculating the Expected Confidence Error (ECE). The in-
corporation of probabilistic machine learning enables decision-makers to
make informed decisions under uncertainty, enhancing the practical util-
ity of the pipeline. The pipeline’s robustness to signal noise and its ability
to handle spurious data are presented and discussed.

Keywords: Structural health monitoring · high-rate systems · nonlinear
time series, topological data analysis · probabilistic machine learning ·
uncertainty quantification.
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1 Introduction
High-rate systems undergo rapid and extreme changes within short timeframes,
common in aerospace, automotive safety, and structural engineering. These sys-
tems experience dynamic events with magnitudes surpassing 100 gn and dura-
tions under 100 milliseconds [4]. Examples include hypersonic vehicles, active
blast mitigation, and ballistic packages [11, 20, 23]. Real-time feedback on struc-
tural integrity can enhance survivability. However, this research is challenging
due to large uncertainties in external loads, high non-stationarities, heavy dis-
turbances, and unmodeled dynamics from system configuration changes [12].

Various methods, including physics-based and data-based techniques, address
these challenges. Physics-based modeling, such as real-time model updating for
high-rate dynamics [5] and a model reference adaptive system achieving sub-
millisecond computational speeds [24], has proven effective. Data-based tech-
niques involve machine learning models like Long Short-Term Memory (LSTM)
for high-rate state estimation [2, 3]. These approaches tackle issues like data
scarcity and the complexity of modeling high-rate dynamics [10]. However, data-
driven methods often lack uncertainty quantification (UQ), which is crucial for
making informed decisions based on prediction confidence levels [17]. Incorpo-
rating UQ enhances the reliability and effectiveness of decision-making.

This paper develops a High-Rate Structural State Estimation Pipeline (HR-
SSEP), a probabilistic machine learning pipeline for real-time structural state
estimation and uncertainty quantification in high-rate dynamic systems. We ex-
plore integrating Topological Data Analysis (TDA) for feature extraction. The
pipeline’s performance is evaluated using laboratory datasets from the Dynamic
Reproduction of Projectiles in Ballistic Environments for Advanced Research
(DROPBEAR) testbed [13].

The rest of the paper is organized as follows: Section 2 covers the DROP-
BEAR testbed and Monte Carlo (MC) Dropout. Section 3 details the methodol-
ogy for developing the machine learning pipeline. Section 4 presents and discusses
the results. Section 5 concludes with recommendations for future work.

2 Background
This section presents background on the experimental testbench and Monte
Carlo Dropout.

2.1 DROPBEAR experimental testbed
The Dynamic Reproduction of Projectiles in Ballistic Environments for Ad-
vanced Research (DROPBEAR) experimental testbed, shown in Fig. 1, was
developed to study high-rate dynamic systems [13]. It comprises a 51 x 6 x
350 mm beam equipped with a single accelerometer (model 393B04 by PCB
Piezotronics) mounted at the beam’s free edge. The testbed incorporates a mov-
able roller support system, allowing controlled variation in boundary conditions
during experiments. This roller follows a predefined profile ranging from 48 mm
to 175 mm, initiating vibrations in the beam without requiring extraneous in-
puts. Experimental tests involved various input profiles, including six square
wave inputs, six sinusoidal inputs, and six impulse inputs, each designed to elicit
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Fig. 1: DROPBEAR experimental setup along with the displacement and accel-
eration signals [22].

specific structural responses. Data acquisition during experiments was conducted
using a 14-bit ADC for the linear transducer (SPS-L225-HALS by Honeywell)
and a 24-bit IEPE ADC for acceleration data (NI-9234). These measurements
provide insights into the dynamic behavior of structures under ballistic environ-
ments, facilitating the development and validation of advanced state estimation
techniques. The dataset used in this work is made available through a public
repository [22].

2.2 MC Dropout
MC dropout, initially introduced as a regularization technique to mitigate over-
fitting in deep neural networks (DNNs) [19], has emerged as a promising method
for approximating posterior predictive distributions in Bayesian neural networks
(BNNs)[8].

In MC dropout, dropout layers are added after each fully connected layer
of the DNN. During training, these dropout layers introduce randomness by
stochastically dropping connections between neurons, creating a randomized
sparse network. At test time, multiple forward passes through the model are
conducted with different dropout patterns, resulting in an ensemble of predic-
tions. This ensemble can then be leveraged to estimate prediction uncertainty.

One of the key advantages of MC dropout is its simplicity of implementa-
tion, requiring minimal modifications to existing DNN architectures. It exhibits
low computational cost and scalability, making it applicable to various types of
neural networks, including convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) [9, 7].

3 Methodology
The methodology for this study involves investigating probabilistic machine
learning pipelines for high-rate state estimation using recent research on fea-
ture extraction through TDA [18]. An overview of the HR-SSEP is shown in
figure 2.

HR-SSEP begins with a low-pass filter to the raw data to enhance quality
and reduce noise. After preprocessing, TDA feature extraction is applied to the
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Fig. 2: Overview of the probabilistic machine learning pipeline using TDA fea-
tures extraction and delay vector extraction

filtered data. Initially, the collected signal data are one-dimensional. To use TDA
techniques, the signals must be transformed into point clouds using Takens’
embedding [21]. Time series data x(t) is converted into delay vectors χ(t) =
[x(t), x(t− τ), x(t− 2τ), . . . , x(t− (d− 1)τ)], where τ is the time delay and d is
the embedding dimension. According to Takens’ theorem, proper selection of d
and τ preserves the topological characteristics of the original system. Typically,
d is determined using the false nearest neighbor test, and τ is found using mutual
information [15, 14].

To address nonstationarity from the moving boundary condition, two sliding
windows are used to extract local TDA features, assuming stationarity within
these windows. Given the sampling frequency, maximum frequency (fmax), and
minimum frequency (fmin) of the data, two sliding windows (H0 and H1) are
constructed with calculated window sizes. The time delay (τ) is calculated using
the equation: τ = 0.25

fmax
.

This ensures that the embedded signal forms a unit circle at fmax, distin-
guishing shapes at lower frequencies, which resemble ellipses. For H0 feature
extraction, the window size is 1

fmax
+ 2τ , and for H1 feature extraction, it is

1
fmin

+ 2τ . These windows are min-max scaled to standardize them, focusing
on temporal aspects rather than amplitude. The scaled windows are converted
into point clouds using calculated time delays (τ). With an embedding dimen-
sion d set to 3, TDA techniques, specifically persistent homology [6], are applied
to extract 12 features (6 from H0 and 6 from H1) that numerically represent
the point cloud’s shape. Feature selection is then performed using correlation
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heatmap analysis, resulting in 11 selected features. To compare, we use a base-
line method of delayed vector extraction, employing the H1 window size and
setting the embedding dimension to 11 for a fair comparison with TDA features.
Both methods’ input data are normalized to ensure consistent scaling, promoting
stable training and improved convergence.

The augmented dataset then serves as the training input to the MC Dropout
algorithm. For MC Dropout, the number of layers, hidden units, and ensemble
size are set to 3 layers with 64 hidden units each and 15 forward passes for making
predictions. The model was trained using the Adam optimizer with a learning
rate of 0.001 and a batch size of 32. The training process was conducted for 1000
epochs, with early stopping based on validation loss to prevent overfitting. The
algorithm was trained on standard (STD) movement profiles. Subsequently, the
model’s generalization was tested using data from stepwise movement (STM)
profiles with 10, 30, and 60 steps, and random movement (RND) profiles.

4 Results and Discussion
The prediction results for the random movement profile using MC Dropout are
shown in Figure 3. The performance of MC Dropout under two different feature
inputs is summarized in Table 1. The metrics used for evaluation include mean
absolute error (MAE), signal-to-noise ratio measured in decibels (SNRdB), and
time response assurance criterion (TRAC). TRAC, which ranges from 0 to 1,
measures the correlation between two-time series signals, where a higher value
indicates a stronger correlation. The equation for TRAC is given in equation 2
for the reference time series vector y and prediction vector ŷ [1]. Additionally,
Expected Confidence Error (ECE) is reported, representing the weighted average
discrepancy between predicted and actual uncertainties, providing insight into
the model’s confidence calibration [16]. Furthermore, the average prediction time
for each input sample was 278 µs, meeting the requirement for predictions to be
made in under 100 ms.

TRAC =
(yT ŷ)2

(yT y)(ŷT ŷ)
. (1)

Table 1: Results for MC Dropout
Delay vector input TDA features input

Data types MAE (mm) TRAC SNRdB ECE (%) MAE (mm) TRAC SNRdB ECE (%)
STD 8.92 0.9875 18.15 22.03 7.74 0.9870 18.73 8.75
STM - 10 8.24 0.9940 21.05 6.35 6.86 0.9933 21.55 5.52
STM - 30 8.81 0.9938 20.75 10.80 7.41 0.9921 20.80 2.96
STM - 60 9.53 0.9931 20.26 12.98 8.29 0.9909 20.11 3.43
RND 7.95 0.9905 19.65 11.76 6.99 0.9906 20.29 6.16

The improved performance of the TDA features is evident from the lower
MAE, higher TRAC, and higher SNRdB values, as well as lower ECE (%) val-
ues compared to the delay vector input. The lower ECE (%) values associated
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(a) Result using Delay vector as input

(b) Result using TDA features as input.

Fig. 3: Prediction results using MC Dropout algorithm and calibration curve
(right).

with TDA features indicate better calibration than the delay vector input. This
suggests that utilizing topological features extracted through TDA enhances
the accuracy and robustness of the MC Dropout model in estimating high-rate
states. Overall, these results underscore the potential of TDA-based feature ex-
traction in improving the performance of probabilistic machine learning models
for high-rate state estimation tasks.

5 Conclusion
In this work, a probabilistic machine-learning pipeline for high-rate state es-
timation was developed with the combination of TDA feature extraction and
traditional feature engineering techniques. TDA feature extraction exhibited su-
perior performance over delay vector extraction by comparing the results with a
baseline feature extraction method and a non-probabilistic model. Notably, the
Expected Confidence Error (ECE) metric for TDA features was lower, indicating
improved calibration compared to the baseline. Despite this, the TDA-based fea-
tures demonstrated lower MAE, higher TRAC, and higher SNRdB, underscoring
their effectiveness in enhancing model accuracy and robustness.

The findings of this study highlight the promise of TDA-based feature ex-
traction in improving the performance of high-rate state estimation models. Fu-
ture research may include stabilizing the metric for the probabilistic model by
addressing run-to-run variation and exploring additional ways to optimize and
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generalize the proposed probabilistic machine-learning pipeline. This extension
could involve incorporating a forecasting ability into the probabilistic model.
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