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HIGH-RATE DYNAMICS

❑ Description of High-rate dynamics:

▪ high-rate (< 100 ms)

▪ high-amplitude (acceleration > 100 g)

▪ such as a blast or an impact

❑ The high-rate dynamics are subjected to

▪ large uncertainties in external loads;

▪ high levels of nonstationarities and heavy disturbances, and 

▪ the generation of unmodeled dynamics from changes in system 
configuration

https://lh3.googleusercontent.com/proxy/w-IFlU4KzYIqsSI-zq860V8NNiweX6sfAilLLNxztT_6yCu7V3eb8RgnrQFboqnRllaCkpX0ULMcYiKRHHAi7jBClOphkYSjpBnPxEZqz0Y1oBP6PB58
https://injuredcalltoday.com/wp-content/uploads/2020/02/Car-Accidents-Statistics-Most-Dangereous-Places-to-Drive-in-America.jpg
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Structures Experiencing High-Rate Dynamics

Ballistics packages

Hypersonic vehicles Space launch system

Vehicle collision

Blast seat energy absorbers

Blast protection damper
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HIGH-RATE DYNAMICS (continued)

❑ Goals

▪ Application: Real-time decision making for structures

▪ Required Technologies: 

▪ low-latency model updating

▪ system state prognostics in real time

❑ Challenges:

▪ Computing power is limited 

▪ memory, available energy, processors

▪ Unknown sources of the inputs (forces, location)

▪ Inability to calculate fault scenarios in advance.

▪ Rare and extreme situations
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THE MAIN AIM OF THIS WORK

❑ A numerical analysis for the real-time implementation 

▪ Fast Fourier Transform (FFT)-based approach

▪ time series forecasting.

❑ The main contribution: FFT-based approach responds on a nonstationary event

▪ before, during, and directly following the event

▪ considering different learning window lengths and assumed computation times.

❑ Implementation of this preliminary time series forecasting work 

▪ Offline: using pre-recorded experimental data

▪ The FFT-based approach is implemented in a rolling window configuration.
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ALGORITHM
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▪ The measured acceleration signal is 

▪ The rolling window is  

▪ A polynomial function is used for finding trend.

▪ After removing the trend, the new acceleration signal 
without trend  is

▪ As considered, the acceleration signal without the 
trend, 

▪ Therefore, the discrete Fourier transform (DFT) of that series can be 
expressed as 

▪ Similarly, the inverse DFT can be written as 

▪ A new series of M length where M > N. Using amplitude and phase 
information, the time series can be constructed and written as 

▪ The time series with the trend information added back can be 
expressed as 

. 

▪ By applying the FFT-based time series forecasting method, a signal is generated that is M points 
long where M > N. The difference, (M - N) presents the length of the prediction horizon. 

▪ The predicted series would then be

PROBLEM STATEMENT

10



ASME SMASIS 2021 VIRTUAL CONFERENCE
September 14–15, 2021

Experimental setup
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Experimental setup of a cantilever beam with key components and data acquisition setup.

❑ This data is available in a public repository [1]. This paper used text_3.

❑ The mode shapes and natural frequencies for the first three modes of the cantilever were computed via Euler’s formula

Mode shapes and frequencies for the cantilever beam setup showing: (a) mode shape 1; (b) mode shape 2, and; (c) mode shape 3.

EXPERIMENTAL SETUP

control computer

power amplifier

data acquisition beam structure

shaker
load cell

accelerometer
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[1] High-Rate-SHM-Working-Group. Dataset-4 univariate signal with nonstationarity.
https://github.com/High-RateSHM-Working-Group/Dataset-4-Univariate-signal-withnon-stationarity
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DATA STRUCTURE

The full 16-second test is shown in the upper plot while the inset shows the 1 second around the nonstationary

❑ The structure’s measured acceleration response for a composite sinusoidal input from the shaker. 

❑ Two sine wave signals are concatenated together at t=0 where a 50% nonstationary is present. A 50% nonstationary event is 
introduced at 0 s, as measured by a 50% increase in the standard deviation of the signal. 

❑ The first half of the composite signal is built from 100, 120, and 150 Hz frequencies while the second half signal consists of 100 
and 120 Hz frequencies. 
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Results and discussion
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RESULTS

The effect of two parameters on the algorithm have been 
analyzed: 

1. The length of the learning window 
2. The computational time 

The time series prediction for the FFT-based 
algorithm for the various learning window lengths 
considered. 

❑ Applying the Nyquist Theorem, the minimum 
length of the learning window should be 0.1 s. 

Time series prediction using various learning window lengths showing: (a) 0.07 s window length; (b) 0.08 s 
window length; (c) 0.09 s window length; (d) 0.1 s window length; (e) 0.5 s window length; and (f) 1 s 
window length.
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The instantaneous (i.e., point-by-point) error for the 
FFT based algorithm for various learning window 
lengths considered is shown in this figure.

❑ As the length of the learning window increases
beyond 0.1 s, the quality of the reproduced signal 
improves. 

❑ Finally, the three learning window lengths of
0.1 s (d), 0.5 s (e), and 1 s (f) are being considered 
for further analysis. Calculated instantaneous error over for the experiment data with various learning 

window lengths showing: (a) 0.07 s window length; (b) 0.08 s window length; (c) 0.09 s 
window length; (d) 0.1 s window length; (e) 0.5 s window length; and (f) 1 s window 
length.

RESULTS (continued)
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RESULTS (continued)

17 Time series prediction for 0.5 s learning window length  in different states

pre-event steady state

transient-event 

post-event steady state
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THE LENGTH OF THE LEARNING WINDOW 

❑ The mean error and learning window length relationship are inversely proportional while 
the transient time and learning window length relationship are proportional.

Effect of various learning window lengths (L) showing:
(a) MAE in different states, and; (b) transient time.

Performance metrics for various learning window lengths 

learning window length

0.1 s 0.5 s 1 s

State MAE 

(m/s2)

Pre-event steady state 0.0112 0.0039 0.0038

Transient event 0.0409 0.0398 0.0335

Post-event steady state 0.0298 0.0103 0.0102

Transient time (s) 0.42 0.82 1.32
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THE COMPUTATIONAL TIME 

❑ The computational time increases, the MAE and transient time increases. This is a 
proportional relationship. 

Performance metrics for various computational times 

Effect of various computational time (T) in a specific
learning window length (L) showing: (a) MAE in different states, and;(b) transient time.

computational time

0.01 s 0.1 s 0.5 s 1 s

State MAE 

(m/s2)

Pre-event steady 

state

0.0099 0.0112 0.0175 0.0254

Transient event 0.0408 0.0409 0.0414 0.0441

Post-event steady 

state

0.0265 0.0298 0.0459 0.0666

Transient time (s) 0.32 0.42 0.82 1.32
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Conclusion
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❑ This work presents a mathematical examination and exploratory outcomes for the continuous 
execution of a Fast Fourier Transform (FFT)-based methodology for time series forecasting.

❑ Learning window lengths are inversely proportional with mean error in different states and 
proportional with transient time. 

❑ The relationship between computational time and mean error in different states, as well as transient 
time, is proportional. 

FUTURE WORK

CONCLUSION

❑ In future work, the FFT-based rolling window prediction method will be implemented in 
hardware for real-time online time series forecasting. 
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