
Proceedings of the ASME 2024 International Mechanical Engineering Congress and
Exposition

IMECE2024
November 17-21, 2024, Portland, OR, USA

IMECE2024-145950

DISTRIBUTED REAL-TIME SOIL SATURATION ASSESSMENT IN LEVEES USING A
NETWORK OF WIRELESS SENSOR PACKAGES WITH CONDUCTIVITY PROBES

Puja Chowdhury
Department of

Mechanical Engineering
University of South Carolina

Columbia, South Carolina 29208
Email: pujac@email.sc.edu

James Crews
Department of

Computer Science and Engineering
University of South Carolina

Columbia, South Carolina 29208
Email: jccrews@email.sc.edu

Ayman Mokhtar
Department of Civil and

Environmental Engineering
University of South Carolina

Columbia, South Carolina 29208
Email: amokhtar@email.sc.edu

Sai Durga Rithvik Oruganti
Department of

Computer Science and Engineering
University of South Carolina

Columbia, South Carolina 29208
Email: orugants@email.sc.edu

Ryan Van Wyk
Department of

Mechanical Engineering
University of South Carolina

Columbia, South Carolina 29208
Email: rvanwyk@email.sc.edu

Austin R.J. Downey
Department of

Mechanical Engineering
Department of Civil and

Environmental Engineering
University of South Carolina

Columbia, South Carolina 29208
Email: austindowney@sc.edu

Malichi Flemming
Department of

Mechanical Engineering
University of South Carolina

Columbia, South Carolina 29208
Email: malichi@email.sc.edu

Jason D. Bakos
Department of

Computer Science and Engineering
University of South Carolina

Columbia, South Carolina 29208
Email: jbakos@cse.sc.edu

Jasim Imran
Department of Civil and

Environmental Engineering
University of South Carolina

Columbia, South Carolina 29208
Email: imran@sc.edu

Sadik Khan
Department of Civil and

Environmental Engineering
Jackson State University

Jackson, Mississippi 39217
Email: sadik.khan@jsums.edu

1 Copyright © 2024 by ASME



ABSTRACT
Levees play a critical role in safeguarding communities and

assets from flooding, acting as essential defenses against the dev-
astating impacts of inundation. Yet, earthen levees are prone to
breaches, especially in the face of swift floodwaters. Distributed
low-cost sensor networks offer the potential to generate spatial
maps illustrating soil moisture levels. Long-term monitoring of
these spatial maps could identify vulnerable zones in the levee
while providing an understanding of how climate change affects
levee stability. This study presents an investigation into spatial
monitoring of soil saturation in levees using a wireless network
of UAV-deployable sensing spike packages. The goal of this pa-
per is to demonstrate the use of these sensors for assessing soil
conductivity levels in sand-filled embankments. The obtained
soil conductivity levels are crucial for determining soil satura-
tion. The developed sensing spikes consist of a spike that pen-
etrates the ground and measures conductivity between two elec-
trically conductive contacts. The sensing spike consists of mi-
croprocessors for edge computing, and wireless data communi-
cation systems that report data to a way station in real-time. To
validate the efficacy of the developed sensors, a flume test is de-
veloped as a replica of a levee and monitored under controlled
water flow conditions. The analysis of data at different times
revealed the progression of moisture throughout the earthen em-
bankment. Initially, the soil is almost dry. As the controlled wa-
ter flow proceeds, the soil becomes partially saturated, with the
final stage showing a dominant presence of saturated soil. The
collected data sampled at the measurement points is expanded
to a continuous moisture profile using kriging. Gaussian krig-
ing, also known as ordinary kriging, is one of the commonly
used variants of the kriging method. In Gaussian kriging, the
estimation of values at unsampled locations is based on a lin-
ear combination of nearby data points, with weights determined
by their spatial relationships. The Gaussian assumption implies
that the errors in the estimation process follow a normal distribu-
tion. The extended knowledge about saturation levels obtained
through kriging can lead to insights for predicting vulnerable ar-
eas and preempting potential failures. Overall, this study paves
the way for further development of a wireless network of sens-
ing spike packages as a UAV-deployable system for levee health
assessment and improved infrastructure management.

INTRODUCTION
Levees are human-made embankments, typically con-

structed from compacted soil and running parallel to rivers or
coastlines. These elongated earthen embankments act as barri-
ers, designed to contain overflowing water and protect adjacent
land [1]. By holding back high waters, levees protect neighbor-
ing lands, including cities, infrastructure, and agricultural fields,
from the devastating consequences of floods. However, levees
require constant monitoring and maintenance to ensure their ef-

FIGURE 1. Diagram of an earthen levee depicted in cross-section,
featuring labeled layers and potential areas of structural weakness.

fectiveness. To mitigate these risks, sensors can be employed
for continuous monitoring, enabling early warnings for evacua-
tion and preventative actions [2, 3]. Levee failure, the breach-
ing of these water-containment structures, can occur due to vari-
ous factors including water pressure overwhelming the structure,
seepage weakening the internal foundation, and seismic activity
causing structural damage [4, 5]. Internal erosion, also known as
pipe erosion, weakens the levee as water seepage washes away
soil particles, forming internal channels and sand boils. Animal
activity and decaying root systems are identified as primary con-
tributors to these internal pathways for water to weaken the levee
and ultimately lead to its failure [6]. Figure 1, provides a detailed
illustration of a levee structure.

Soil moisture monitoring is a vital component of studying
soil behavior and its connection to ground movement. Soil mois-
ture monitoring involves systematic measurement and interpre-
tation of water within the soil. This water content directly affects
how stable and prone to deformation the soil is. Researchers uti-
lize various techniques like ground sensors, satellite data, and
geophysical methods to acquire real-time data on soil moisture
across various areas and timescales [7]. This information is not
just beneficial for agriculture and water management, but also
crucial for preventing geological hazards like landslides, subsi-
dence, and soil erosion. By understanding the moisture levels,
practitioners gain valuable insights into soil’s mechanical prop-
erties [8]. This knowledge empowers engineers and geologists
to predict potential ground movements and take steps to protect
infrastructure and communities. Numerous published papers ex-
plore the methods, applications, and significance of soil mois-
ture monitoring, considerably furthering geotechnical and envi-
ronmental sciences [9].

Wireless sensor networks (WSNs) are powerful tools for
gathering environmental data in remote or hard-to-reach lo-
cations. These networks consist of numerous small, battery-
powered sensors scattered across a designated area. Each sensor
collects specific data, like temperature, humidity, or soil pres-
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sure, and transmits it wirelessly to a central hub. This allows for
continuous monitoring over large areas without the need for cum-
bersome cables. WSNs are particularly advantageous for appli-
cations like precision agriculture, where they can optimize irriga-
tion based on real-time soil moisture levels, or in environmental
monitoring, where they can track air, water quality, or soil satura-
tion levels in remote areas [10]. Their low cost, easy deployment,
and minimal maintenance requirements make them a versatile
technology for a wide range of applications. The emergence of
compact, drone-deployable sensors offers a more cost-effective
and rapid solution for assessing the health of such crucial infras-
tructure [11].

Spatial mapping of soil parameters is a vital tool for un-
derstanding the intricate variability of soil properties across a
landscape. This technique involves collecting data on various
soil characteristics, such as pH, organic matter content, or nutri-
ent availability, at specific locations within the area of interest.
By employing geostatistical techniques like kriging or regres-
sion analysis, researchers can interpolate these point measure-
ments to create detailed maps depicting the spatial distribution of
these parameters [12]. Spatial mapping aids in agriculture, land
management, and environmental modeling by providing a com-
prehensive understanding of the intricate interplay between soil
properties, like moisture levels, and other environmental factors.
Published research in this field often focuses on methodological
advancements and case studies demonstrating the application of
spatial mapping techniques in diverse geographical settings [13].

This paper explores the spatial conductivity mapping of lev-
ees using an electric resistance-based measurement approach ini-
tially presented by the authors in Chowdhury et al. [14] that
leverages rapidly deployable and open source sensors intended
for levee monitoring [15]. The rapidly deployable sensors used
in this work are developed for potential UAV deployment onto
levees in emergency conditions [16]. In this work, a network of
five independent wireless sensing spikes is used. Each handling
processing, power management, sensing, and data storage. This
system can help identify potential seepage points within levees,
which could lead to a better understanding of maintenance needs
or even levee failure. Wireless communication is used to trans-
mit data to a way station. To map soil saturation across the levee
surface, kriging is used to estimate the values between sensor
locations. The results from a lab experiment are analyzed, con-
sidering both raw and interpolated data. The key contributions of
this work are: (1) developing a network of wireless sensing spike
packages and (2) expanding the available data through kriging
and analyzing both raw data and interpolated data for measuring
soil saturation levels.

METHODOLOGY
This section outlines the hardware developed for this project

before presenting the experimental validations undertaken and
the data processing techniques utilized.

FIGURE 2. Detailed layout of a wireless sensing spike package with
key components, showing: (a) outside view of the package; and (b)
inside view of the package.

HARDWARE DEVELOPMENT
The hardware development phase of this work consists of

two steps: 1) developing the wireless sensing spike package, and
2) wireless communications with the base station. All hardware
designs used in this work are open-sourced and included in the
public repository [15] under the sensor version Mississippi v0.1.

To simplify the wireless communication of a network of
sensing spike packages, this study focused solely on the conduc-
tivity measuring aspect of the node. The sensing spike package
has an instrumented spike, depicted in figure 2(a). The sens-
ing spike has conducting surfaces - an outer tube and an inner
rod - separated by an insulating ABS plastic tube. The overall
length of the sensing spike is 14.81 cm. This design allows for
the integration of a conductivity module into the tip of the spike,
enabling the spike to also function as an underground moisture
probe. Each wireless sensing spike package contains a water-
proof box with PCB components and a battery. Figure 2(b),
shows the inside view of the package. Waterproof connector ( 1

2
inch) used to harbor the sensor spike. A Samsung 25R 18650
2500 mAh 20 A battery that puts out 3.6 V to 4.2 V is used.
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FIGURE 3. Detailed layout of the sensing spike electrical circuit for
a wireless sensing spike package.

Figure 3 shows the layout for the sensing spike electric
circuit. The main controller, an Arduino Nano, is accessible
via headers on the PCB’s front. All other components connect
through the microcontroller.

To collect the data, a sensing spike is used as a resistor
in a voltage divider to produce an output voltage. The +3.3 V
(Vin) output voltage from the Arduino Nano is connected to one
leg of the spike terminal (R1), modeled as a variable resistor in
the schematic. The other leg is connected to a 6.8 kΩ resistor
(R2), which is then connected to the ground. A resistor value of
6.8 kΩ is selected based on a balance between sensitivity, range,
power consumption, and noise performance to ensure accurate
and reliable measurement of soil conductivity or moisture level.
The output voltage, the voltage divider formed by R1 and R2, is
routed to an analog pin (A3) on the Arduino. The analog value is
then converted to a digital value using the microcontroller’s 10-
bit analog-to-digital converter (ADC), which maps values from
0 to 1023. This digital value represents the voltage (Vout), which
is the conductivity value targeted for wireless transmission to the
base station. The voltage divider equation is in the form:

Vout =
R2

R1 +R2
·Vin (1)

To transmit the data, the nRF24L01+ module is used. A data
packet containing the conductivity value, along with other val-
ues, is written over the network for the base station to receive.

FIGURE 4. Overall wireless communication of a network of sensing
spike packages, displaying: (a) network of five wireless sensing spike
packages, (b) layout of the flume setup, and (c) detailed layout of the
base station.

Figure 4, shows the overall wireless communication of a net-
work of sensing spike packages. A single wireless sensing spike
package as in Figure 2 reproduced for a total of five nodes. Fig-
ure 4(a) is a network of five wireless sensing spike packages.
Each node must be given an address for proper communication.
The RF24Network library [17] used suggests this value be in oc-
tal format or something similar (Node 1 address → 0o01, Node
2 address → 0o02, . . . , etc). Figure 4(b), is the overall layout
of the flume setup which is set far away (2.4 m) from the base
station regarding wireless communication.

Figure 4(c), the base station must be given an address of
0o00, this is the address to which each node is transmitting data.
The base station is a Raspberry Pi with an nRF24L01+ module
connected. A scheduler is used to manage receiving the data
from all five nodes. While all nodes are constantly sending data
on a 1-second interval, the issue became clear that data may be
missed from some nodes and an uneven number of data points for
each node would be recorded. In an attempt to prevent this type
of failure, the base station awaits to receive data from a specific
node in order with a given timeout to avoid all data being com-
promised due to failing in a node. In a typical use case, data from
node 1 is awaited until received, and then each of the nodes is it-
erated by following this pattern of awaiting data to be received
for each node. In the case of complete failure of an individual
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node, data is awaited from the node in question, a timeout is
reached and the node is declared unreachable for that iteration
and the sequence continues normally. When data is received by
the base station it is saved to a data file specific to the node it was
received from.

EXPERIMENTAL SETUP
Figure 5(a) displays the experimental setup of wireless com-

munication for the sensing spikes for determining soil saturation
levels. In the flume setup, an earthen embankment of 78 x 27 cm
is used. Two wooden plates on both sides of the sand structure
are used to make it stable. Figure 5(b), shows the seepage plate
(left) which has small holes in the bottom that will help to prop-
agate the water flow through the sand. The flume’s height is
24 cm and is filled with sand to a height of 15 cm as shown
in figure 5(d). Water is infiltrated through 5 mm holes in seepage
plate (left) to simulate moisture propagation. The base station is
placed around 2.4 m away from the overall flume setup as in fig-
ure 4(b) and (c). Five wireless sensing spike packages are placed
in the sand as shown in figure 5(a). The main events detected
during this experimental phase are the no moisture propagating
and moisture propagating induced by water flow, indicated in fig-
ures 5(d) and (e). To validate the performance of the sensing
spike package over time, cameras are strategically positioned on
the sides and top of the experimental setup to capture the visual
progression of moisture propagation.

The coordinate of the five wireless sensing spike packages
is shown in table 1, where the x-coordinate represents positions
along the length of the sample (78 cm), and the y-coordinate indi-
cates positions along the width of the flume (27 cm). In this con-
figuration, the voltage drop (Vout), measured as like equation 1
for each spike separately and for instance will be directly pro-
portional to the moisture level measured by the spike (R1) [18].
As a result, for five spike packages measured voltages are given
as, V = [v1, v2, · · · , v5].

TABLE 1. Coordinates for the positions of five wireless sensing spike
packages in the moisture test.

spikes
notation of fixed resistor
with respect to the spike

x-coordinate

(cm)

y-coordinate

(cm)

1 v1 5 13.5

2 v2 20 13.5

3 v3 35 13.5

4 v4 50 13.5

5 v5 65 13.5

FIGURE 5. Laboratory-induced setup of wireless communication for
UAV-deployable sensing spikes for determining soil saturation levels
of the soil with key components annotated, showing the experimental
setup:(a) top view with no water flow; (b) side seepage plate (left) water
flow entry; (c) top view with water flow; (d) side view with no water
flow; and (e) side view with water flow.

DATA PROCESSING
To interpolate the data for all spatial points, ordinary krig-

ing is employed [19]. The locations of the wireless sens-
ing spike packages are denoted with corresponding coordinate
[X ] = [(x1), (x2), · · · , (x5)]. The voltage measurements are rep-
resented as V = [v1, v2, · · · , v5]. Given the five observations at
discrete locations, the kriging model aims to accurately predict a
continuous vk at all possible xk. The desired prediction is formu-
lated as follows:

vk = µ + ε(xk) (2)

where µ denotes the true mean of the entire dataset. As the true
mean value µ is unknown, estimation is performed using ordi-
nary kriging, and ε(·) represents the error (small-scale variation)
at x. The estimation v̂k is expressed as:

v̂k =
n

∑
i=1

λivi (3)

where λ signifies the interpolation weight. Here, we assume
λ1 + λ2 + λ3 + λ4 + λ5 = 1 to yield an unbiased result. For
ordinary kriging, three conditions must be met: 1) linearity
(v̂k =∑

n
i=1 λivi), 2) unbiasedness (∑n

i=1 λi = 1), and 3) minimized
error: selecting the most appropriate values for the coefficients
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FIGURE 6. Data obtained from five wireless sensing spike packages
during the overall moisture test. The Black dashed line indicates six-
time stamps TS 1 - TS 6.

λn and the Lagrange multiplier 2m. E denotes the estimated
function [19]. Consequently, the loss function for the problem
is defined as:

Lkriging = E

(
vk −

n

∑
i=1

λivi

)
−2m

(
n

∑
i=1

λi −1

)
(4)

The PyKrige library is used to perform the kriging pro-
cess [20]. The data containing sensor locations, and voltage read-
ings [X, V] is used to train the Gaussian variogram models. For
this study, a simple boolean operator is implemented to the es-
timated voltage, wherein any inferred voltage values below zero
are adjusted to zero (V < 0 → 0), reflecting the fact that negative
voltage readings are not physically feasible.

RESULTS AND DISCUSSION
The overall results of the moisture test conducted using the

network of five wireless sensing spike packages are illustrated in
Figure 6. The duration of this test spans approximately 2355 s
(39.25 minutes). The figure depicts how the voltage of each
sensing spike gradually increases over time. As previously men-
tioned, the measured voltage is proportional to the moisture level
detected by the sensing spike. For a comprehensive analysis, six
different timestamps (TS) throughout the entire test are consid-
ered: 100, 216, 472, 624, 1402, and 2339 s.

Figure 7 presents the side view for TS 1, TS 2, TS 3, TS
4, TS 5, and TS 6 consecutively. At TS 1 (around 100 s), min-
imal moisture propagation is observed, as shown in Figure 7(a).
Experimental illustrations for other timestamps, namely TS 2
through TS 6, are shown in figures 7(b) through 7(f).

FIGURE 7. The experimental configuration illustrating the locations
of five wireless sensing spike packages as moisture spreads, including
(a) side view at TS 1; (b) side view at TS 2; (c) side view at TS 3; (d)
side view at TS 4; (e) side view at TS 5; and (f) side view at TS 6.

TABLE 2. Voltage (V) measurements for the five wireless sensing
spike packages at TS.

voltage (V)

spike 1 spike 2 spike 3 spike 4 spike 5

time stamp (s)

TS 1 100 0.000 0.000 0.000 0.000 0.000

TS 2 216 0.751 0.000 0.000 0.000 0.000

TS 3 472 0.983 0.519 0.000 0.000 0.000

TS 4 624 0.996 0.729 0.416 0.000 0.000

TS 5 1402 1 .000 0.900 0.9 00 0.545 0.477

TS 6 2339 0.987 0.906 0.925 0.825 0.787

Table 2 displays the voltage measurements for the five wire-
less sensing spike packages at TS. In the second time measure-
ment (TS 2), only spike 1 recorded a voltage reading of around
0.751 V . This suggests that moisture is mainly moving through
spike 1 at this point, as shown in figure 7(b). At TS 4, moisture
propagates through spikes 1, 2, and 3. In the cases of TS 5 and
TS 6, moisture propagates across all wireless five sensing spike
packages.

As all 5 sensing spike packages are in a line, figure 8 shows
overall 1D kriging outcomes from the moisture test for six differ-
ent timestamps in case of y-axis location (denoted as location).
From table 2, minimal moisture is observed and voltage mea-
surement is zero at TS 1. So the moisture mapping as figure 8
shows the lowest amount of moisture in almost the overall area
for TS 1. In the case of TS 4 from figure 7(d), spikes 1, 2, and
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FIGURE 8. 1D kriging outcomes from the moisture test for six-TS.

3 show a gradually increasing amount of voltage change con-
cerning the moisture level of propagation. This correlates to the
moisture map produced by the kriging algorithm shown in fig-
ure 8. At TS 5 shown in figure 7(e), the entire test volume shows
evidence of water propagation as does the kriging inferred results
for TS 5 in figure 8. Lastly, TS 6 which correlates to figure 7(f)
shows nearly complete soil saturation.

CONCLUSION
This study demonstrated the potential of wireless communi-

cation for a network of sensing spike packages for levee moni-
toring. The experiment employed these packages embedded in a
laboratory setting to measure soil conductivity and assess mois-
ture levels. By combining kriging for data interpolation and pre-
liminary data analysis, the research mapped soil saturation across
the levee. The analysis of data from six different time stamps
revealed the progression of moisture throughout the simulated
levee. Initially, the soil was almost dry. As the controlled water
flow proceeded, the area became progressively saturated, with
the final stage showing a dominant presence of partially saturated
soil. This information provides valuable insights for monitoring
real-world levees and identifying potential areas of concern for
maintenance or preventative measures.

Overall, this initial study paves the way for further devel-
opment of a wireless network of sensing spike packages as a
rapidity-deployable system for levee health assessment. The
ability to measure soil conductivity and analyze saturation lev-
els offers a promising approach for proactive levee monitoring
and improved infrastructure management.
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