
1



Matthew Burnett a,  Tianyu Zhang a, Austin R.J. Downey a,b , Lang Yuana

a Department of Mechanical Engineering
b Department of Civil and Environmental Engineering

SURFACE ROUGHNESS SURROGATE MODELING 
IN METAL 3D PRINTING USING KRIGING AND 

BATCH EXPERIMENTAL DESIGN

2



Outline

• Introduction
• Laser powder bed fusion additive 

manufacturing 
• Surface roughness surrogate modeling 

approaches
• Methodology

• Design of experiment 
• Kriging
• KRISP-U

• Experimentation & results
• Experimental data collection
•  Uncertainty-aware surrogate model
• Final model

• Conclusion and future work

3Image: Aconity3D GmbH. Fair Use



Background LPBF AM

• Laser Powder Bed Fusion (LPBF) 
builds components layer by layer 
by fusing metal powder with a 
laser.

• Enables production of highly 
complex geometries not 
achievable with traditional 
subtractive methods.

• Particularly valuable in fields such 
as aerospace (lightweight 
structures) and biomedical 
(custom implants) applications.
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Background Surface Roughness
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• A persistent challenge in LPBF is variable 
surface roughness caused by the fusion 
process.
• Aerospace systems for example require 

smooth surfaces to reduce friction, 
wear, and drag.

• Biomedical applications like on the 
other hand implants benefit from rough 
surfaces improves osseointegration and 
implant bonding.

• Controlling roughness is challenging but 
critical for large-scale adoption of LPBF.



Welding is a Chaotic Process
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• In LPBF we can easily control:
• Laser power
• Laser speed
• Laser spot size
• Hatch spacing
• Layer thickness: 30 μm

• Other parameters can be adjusted:
• Powder size
• Powder packing

• In general, LPBF has a fair amount 
of uncertainty in the process   



Melt pool physics

• Surface quality is strongly linked to 

melt pool behavior :

• Spatter formation: higher laser 

power ejects particles that solidify 

as defects.

• Denudation: gas expansion 

pushes powder away, 

destabilizing the melt pool.

• Hump formation: repeated spatter 

buildup creates uneven ridges.
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Effect of Power on Top Surface

• Increasing laser power 

generally increases surface 

roughness.

• High power creates more 

spatter, which settles on the 

surface and forms irregularities.

• Results show rougher top and 

vertical surfaces that require 

costly post-processing.
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Effect of Scanning Speed on Top Surface 

• Higher scan speeds stretch the 

melt pool, making it more unstable.

• Leads to Plateau–Rayleigh 

instability:

• Surface tension breaks the 

melt pool into droplets when 

perturbed.

• Causes uneven deposition and 

droplet solidification on the 

surface.

• Faster scans generally promote 

rougher surfaces with increased 

irregularity.
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The Characterization Method  
• Printed test cubes were 

removed from the build 
plate for analysis.

• Optical profilometry was 
used to acquire depth 
maps.

• Depth maps converted 
into surface roughness 
metric (Sa).

𝑆𝑎 =
1

𝐴
ඵ

𝐴

𝑧(𝑥, 𝑦) 𝑑𝑥𝑑𝑦
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The Design of experiment
𝑉𝐸𝐷 =

𝑃

𝑆 ∗ 𝐻 ∗ 𝑇

P: Power

S: Scanning speed 

H: Hatching space

T: Layer thickness

Hatch

Contour

• Initial dataset: 26 points sampled 
across the process domain.

• Only laser power and scan speed 
were varied; other parameters 
held constant.

• Laser powder bed fusion AM

• Machine: Aconity3D MIDI

• Materials: 316L stainless steel

• Conditions: 

• Simple hatch with 100 μm 
spacing

• Laser spot size: 100 μm

• Layer thickness: 30 μm

https://aconity3d.com/products/aconity-midi
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Surrogate Modeling Approach
• Exact relationship between 

parameters and roughness depends 
on printer hardware and material 
properties.

• Brute force sampling of design space 
is expensive and time-intensive.

• Uncertainty-aware surrogate 
modeling can characterize design 
space with minimal samples.

• Enables rapid optimization of new 
materials/processes.

• Allows prediction of desired 
roughness with far fewer tests.
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Proposed Design of Experiments Algorithm

• Kriging with Iterative Spatial Prediction of Uncertainty (KRISP-U).
• Combines Universal Kriging with cross-validation.
• Identifies regions of high model uncertainty.
• Guides new sampling in those regions for more efficient model 

refinement.
• Produces a robust surrogate model with fewer experimental 

points.
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Kriging

• Kriging: geostatistical interpolation method widely used in mining & environmental 
sciences.

• Based on regionalized variable theory:

• Closer data points are more correlated than distant ones.

• Variance structure captured by a variogram.
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Universal Kriging
• Accounts for global trends (e.g., roughness increases with laser power).

• Captures both broad effects and local variability.

• A spatially continuous process 𝑍 at a location 𝑥 represented as: 

𝑧 𝑥 = 𝜇 𝑥 + 𝜖 𝑥

• In matrix notation, the estimated value Ƹ𝑧 𝑥0  can be solved for as:

Ƹ𝑧 𝑥0 = 𝑞0
T ⋅ መ𝛽 + 𝜆0

T ⋅ ϵ

where

• 𝑞0 is a vector of the predictors at 𝑥0.

• መ𝛽 is a vector that contains the estimated drift term coefficients.

• 𝜆0 is a vector of n kriging weights determined by the covariance function.

• ϵ is a vector that contains all the regression residuals (solved iteratively). 
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Regression Coefficient Vector

• መ𝛽, can be solved for by generalized least squares:

መ𝛽 = 𝑞𝑇 ⋅ 𝐶−1 ⋅ 𝑞 −1 ⋅ 𝑞𝑇 ⋅ 𝐶−1 ⋅ 𝑧 

where

• z is the sampled observations

• q is the matrix of the predictors at all observed locations.

• C is the covariance matrix of residuals.

𝐶=
𝐶 𝑥1, 𝑥2 ⋯ 𝐶 𝑥1, 𝑥𝑛

⋮ ⋱ ⋮
𝐶 𝑥𝑛, 𝑥1 ⋯ 𝐶 𝑥𝑛, 𝑥𝑛
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Variogram Model
• The power variogram model, 𝑠 ⋅ 𝑑𝛼 + 𝑛, forms the piecewise semivariance function 𝛾 𝑑 :  

𝛾 𝑑 = ቊ
0 𝑑 = 0
𝑠 ⋅ 𝑑𝛼 + 𝑛 0 ≤ 𝑑

where

• s is a scaling factor
• d is the distance between point covariance pairs 𝐶 𝑥𝑖 , 𝑥𝑗

• α is the exponent (between 1 and 1.99)
• n is the nugget term 

when 𝛾 𝑑 = 𝑛 − 𝐶 𝑥𝑖 , 𝑥𝑗 . Given:

𝐞 = 𝐳 − 𝐪 ⋅ ෡𝛃

Ƹ𝑧 𝑥0  can be iteratively solved for. 
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Predicted Mean and Variance

• After solving for the residuals, the predicted value can be obtained:

Ƹ𝑧 𝑥0 = 𝑞0
T ⋅ መ𝛽 + 𝜆0

T ⋅ 𝑧 − 𝑞 ⋅ መ𝛽

• As can the variance of the predicted value:

𝜎2 𝑥0 = 𝑛 − 𝑐0
T ⋅ 𝐶−1 ⋅ 𝑐0 + 𝑞0 − 𝑞T ⋅ 𝐶−1 ⋅ 𝑐0

T
. 𝑞T ⋅ 𝐶−1 ⋅ 𝑞

−1
⋅ 𝑞𝑜 − 𝑞T ⋅ 𝐶−1 ⋅ 𝑐𝑜

• A more compact way of expressing universal kriging (UK) is: 

Ƹ𝑧 𝑥0 , 𝜎2 𝑥0 = 𝑈𝐾 ȁ𝑥0 𝐷 = 𝑥, 𝑧
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Relative Entropy
• Tracking changes in changes in probability distributions.

• Kullback-Leibler Divergence (KLD): 

𝐷KL(𝑃ȁȁ𝑄) = න
−∞

∞
𝑝 𝑥 log

𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥

• allows for a computationally simple measure of dissimilarity between two probabilities.
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Merging Kriging and Relative Entropy
• Recall that kriging provides: 

 Ƹ𝑧 𝑥0 = 𝑞0
T ⋅ መ𝛽 + 𝜆0

T ⋅ 𝑧 − 𝑞 ⋅ መ𝛽

• and:

𝜎2 𝑥0 = 𝑛 − 𝑐0
T ⋅ 𝐶−1 ⋅ 𝑐0 + 𝑞0 − 𝑞T ⋅ 𝐶−1 ⋅ 𝑐0

T
. 𝑞T ⋅ 𝐶−1 ⋅ 𝑞

−1
⋅ 𝑞𝑜 − 𝑞T ⋅ 𝐶−1 ⋅ 𝑐𝑜

• KLD is simplified for distribution represented by mean (µ) and variance (σ). 

𝐷KL(𝑃ȁȁ𝑄) = log
σq

σp

+
σp

2 + μp −μq
2

2σq
2  − 1/2

• Which gives us a way to monitor changes in probability distributions an any given point x.
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Proposed Design of Experiments Algorithm

• Kriging with Iterative Spatial Prediction of Uncertainty (KRISP-U).
• Combines Universal Kriging with cross-validation.
• Identifies regions of high model uncertainty.
• Guides new sampling in those regions for more efficient model 

refinement.
• Produces a robust surrogate model with fewer experimental 

points.
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Initial model

• Experimental data used to tune 
Kriging hyperparameters.

• Initial run identified regions of high 
uncertainty within the domain.
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Iterative Refinement 

• 7 additional samples taken in the 
previously observed high uncertainty 
regions

• New dataset used to retrain and refine 
the surrogate model.
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Final model

• Additional sampling performed in updated 
high-uncertainty regions.

• Final model shows uniform uncertainty 
distribution which indicates convergence.

• This final dataset treated as “ground truth” for 
comparison.
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Conclusion
• Adding only 7 new samples reduced model error 

dramatically:

• Average error reduced by 68.3% from 
Dataset 1 to Dataset 2.

• Iterative sampling efficiently targets regions of 
maximum impact.

• Confirms algorithm’s ability to rapidly reduce 
uncertainty in experimental domains.
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