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ABSTRACT
Laser Powder Bed Fusion Additive Manufacturing has revo-

lutionized the production of geometrically complex components,
enabling the creation of intricate designs that were previously
difficult or impossible to achieve using traditional manufactur-
ing methods. However, one of the key challenges associated
with laser powder bed fusion is the substantial surface roughness
that often results in parts produced through this process. The
increased surface roughness negatively impacts the mechanical
performance of the components and increases the costs associ-
ated with post-processing, such as additional polishing or finish-
ing treatments. This study seeks to address this challenge by de-
veloping a surrogate model for predicting and controlling vertical
surface roughness based on process parameters. To achieve this,
we propose the Kriging with Iterative Spatial Prediction (KRISP-
Uncertainty) algorithm, which combines regression Kriging with
an iterative leave-one-out cross-validation method that utilizes

Kullback-Leibler Divergence (KLD). This approach refines the
surrogate model using select experimental data points, reducing
uncertainty with minimal additional experimental data. Our find-
ings demonstrate that the KRISP-Uncertainty algorithm can ef-
fectively optimize surface roughness predictions, providing an
efficient method for surrogate modeling and controlling surface
quality in laser powder bed fusion. By rapidly tailoring stochas-
tic surrogate models to specific material and hardware configura-
tions, this method enhances the overall efficiency and effective-
ness of the laser powder bed fusion process, reducing both sur-
face roughness and the associated post-processing requirements.

1 Introduction
Laser powder bed fusion additive manufacturing is a com-

mon additive manufacturing technique used in aerospace or
biomedical applications. Instead of machining metal away from
feedstock, a laser is used to selectively fuse metal powder to-
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gether layer by layer. Laser powder bed fusion enables the pro-
duction of very geometrically complex components far beyond
what can be achieved by traditional subtractive manufacturing
methods. Laser powder bed fusion, however, often results in high
surface roughness owing to the powder fusion process [1]. Con-
trolling roughness is crucial; biomedical implants benefit from
high roughness [2] for bonding, while mechanical systems re-
quire smooth surfaces to reduce friction and improve fatigue
life [3]. While post-processing can reduce roughness, it adds
cost and lead time.

Surface roughness is dependent on several process param-
eters (laser power, hatch distance, layer thickness, scan speed)
and material properties [4]. While the overarching trends of how
these parameters affect the surface roughness are reasonably well
defined, exceptionally precise control of surface roughness will
be very specific to the hardware and material used [5].

A high-fidelity surrogate model predicting vertical rough-
ness must capture both general trends and stochastic behavior.
This study proposes KRISP-Uncertainty, an algorithm that em-
ploys a regression Kriging surrogate model refined via leave-one-
out cross-validation, identifying regions needing more data. The
leave-one-out cross-validation model is scored with Kullback-
Leibler Divergence [6]. KLD is an asymmetric divergence used
to measure the relative entropy of two distributions (P(x) Q(x)).
KLD has become popular for uncertainty quantification ap-
proaches due to its ability to robustly quantify the divergence
of spaces [7].

Pairing Kriging with an iterative cross-validation technique
enables minimal testing while effectively characterizing the de-
sign space for real-world use [8]. Cao et al., for example, used
Kriging in conjunction with a whale optimization algorithm to
characterize the surface roughness of as-built components with
respect to their process parameters [9]. In that study, a Kriging
metamodel is built, experimentally validated, and then searched
with whale optimization. The Kriging-based uncertainty quan-
tification approach proposed in this paper looks to specifically
improve the construction of the Kriging metamodels.

This work proposes and validates KRISP-Uncertainty, an
experimental design algorithm used to predict uncertainty spa-
tially in stochastic domains. The contributions of this study are
twofold: 1) developing a novel iterative experimental design al-
gorithm combining regression Kriging and leave-one-out cross-
validation with KLD to minimize model uncertainty; and 2) ex-
perimentally validating this methodology through targeted mea-
surements of vertical surface roughness in laser powder bed fu-
sion additive manufacturing, demonstrating significant improve-
ments in predictive accuracy and efficiency.

2 Methodology
The proposed algorithm diagrammed in figure 1, combines

the predictive power of Kriging with a statistical uncertainty

FIGURE 1. A flow chart outlining the design of experiment algorithm
process.

analysis model to quantify uncertainty spatially. A “ground
truth” (P(x)) is generated by training a Kriging model with the
entire training set. This ground truth is then compared to mod-
els each with one data point removed (Qn(x)). For each iteration
there will be one P(x) and n, Qn(x) distributions. In this section
P(x) and Qn(x) are arbitrary distributions but for this application
specifically P(x) would be the surface roughness with respect to
the process parameters or, Sa(power,speed)

Once the KLD scores, DKL(P(x) ∥ Qn(x)), are calculated,
they are then assigned to the point missing in that respective
model. It can be assumed that if the removal of a point induces
considerable error in the area surrounding that point, the region is
uncertain. The spatial map of the KLD scores is then generated
by interpolating the error with respect to each point. It should
be noted that though this study chose Kriging paired with KLD
for reasons discussed below, any predictive model and loss func-
tion can be used with this technique. The KLD from continuous
distribution P to continuous distribution Q is defined as
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DKL(P ∥ Q) =
∫

P(x) log
P(x)
Q(x)

dx. (1)

To summarize the algorithm described in figure 1 the abbre-
viated list of steps is shown below.

1. Ground truth P(x): train Kriging on full dataset.
2. Leave-one-out Qi(x): retrain without point i.
3. Uncertainty metric: compute KLD with equation 1 and as-

sign each score to the omitted location.
4. Spatial map: interpolate the KLD scores across the domain

to highlight regions of high uncertainty.

2.1 Kriging
Universal Kriging treats spatial data as a Gaussian process,

providing both interpolated values and confidence intervals. It
models observations as

Z(x) = µ(x)+δ (x), (2)

where µ(x) is a drift term (fit by regression) and δ (x) is the local
variation. The Universal Kriging (UK) estimate at x0 is

ẑ(x0) = m̂(x0)+ ê(x0), (3)

with trend

m̂(x0) = qT
0 β̂ (4)

and residuals weighted by the kriging weights λ0:

ê(x0) = λ
T
0 e, (5)

so that

ẑ(x0) = qT
0 β̂ +λ

T
0 e. (6)

Here, q0 is the vector of basis functions at x0, β̂ are the esti-
mated drift coefficients, e is the vector of residuals at the sampled
points, and λ0 are the kriging weights.

The variance at x0 is

σ
2(x0) = n− cT

0C−1c0

+(q0 −qTC−1c0)
T(qTC−1q)−1(q0 −qTC−1c0). (7)

FIGURE 2. Example test set in the sample space, showing: (a) outline
of all initially tested points; (b) a test bed from the printer and a depth
map example from Dataset 1.

Universal Kriging effectively integrates spatial variability
and regression trends to generate accurate predictive models and
quantify uncertainty. This study extends the universal Kriging
approach by using regression Kriging, where a regression model
captures broad trends and universal Kriging accounts for the spa-
tially correlated residuals. By leveraging regression Kriging, the
predictive accuracy and efficiency of the spatial model are en-
hanced, making it especially effective for iterative refinement and
uncertainty quantification.
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FIGURE 3. Example of a cube used for surface roughness tests.

2.2 Experimental Data Collection
The laser power and speed were varied across different test

locations seen in figure 2 to build a dataset to predict the vertical
surface roughness of as-built components. The material selected
for this study was 316L stainless steel. For all experiments, cubes
were printed with a hatch distance of 100 µm and a layer thick-
ness of 30 µm.

By obtaining a depth map, the surface roughness (Sa) value
could be derived as

Sa =
1
A

∫
A
|z(x,y)|dxdy, (8)

where A is the evaluation area, and z(x,y) is the height of the sur-
face at a point (x,y) relative to the mean plane. Sa was obtained
for both top and vertical surface roughness for all components,
however, this study focuses on the modeling of vertical surface
roughness. Figure 3 shows an example of a cube used for surface
roughness tests.

Over the course of this study, an initial dataset of 26 exper-
imental points was built on iteratively. When new data was col-
lected it was appended to the initial dataset. In total three datasets
were generated each with a few more points than the last. The
number of points in each set is outlined in table 1. Upon collect-
ing an initial 26 data points, a series of numerical experiments
were done to decide upon the interpolation model for the algo-
rithm. Previous literature has already shown the applicability of
using Kriging for the optimization of surface roughness [9].

In this study, three models were tested with the leave-one-
out cross-validation scheme to assess their fitting and predictive
capacity. Leave-one-out cross-validation iteratively removes one
point from the dataset, trains on the rest, and then produces a pre-
diction of each of the missing points. Linear regression, Univer-

TABLE 1. A description of each dataset listed in this study.

dataset number of points

Dataset 1 26

Dataset 2 33

Dataset 3 41

TABLE 2. Performance metrics for each model.

RK UK OK linear regression

MSE 23.00 86.37 86.37 26.27

MAE 3.46 7.19 7.19 3.84

MAPE 17% 32% 32% 18%

FIGURE 4. An outline of all initially tested points in the sample space
in addition to the newly added sample locations from test 2 .

sal Kriging, and Regression Kriging with linear regression and
ordinary Kriging were tested. Table 2 outlines the performance
of each model when trained on the initial dataset.

Due to the superior performance of RK, it was selected as
the model for the remainder of the study. The first set of ex-
perimental data was interpolated using regression Kriging and
the variance was assessed with the algorithm described above in
figure 1. The initial regression Krige and sensitivity analysis is
shown in figure 5.

Following the sensitivity analysis, a series of additional sam-
ples were acquired to improve model performance which can be
seen in figure 4. The additional samples were selected from the
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FIGURE 5. RK predictions of surface roughness and spatial sensi-
tivity analysis for Dataset 1, showing: (a) surface roughness; and (b)
spatial sensitivity for Dataset 1.

high-sensitivity regions marked by the initial sensitivity analysis.
It can be seen in figure 6 that the sensitivity dropped consider-
ably across most of the domain, particularly in the high power
and speed and low power and speed regions.

3 Results and Discussion
To enhance the predictive accuracy and reliability of the ver-

tical surface roughness model, an additional round of data col-

FIGURE 6. RK predictions of surface roughness and spatial sensi-
tivity analysis for Dataset 2, showing: (a) surface roughness; and (b)
spatial sensitivity for Dataset 2.

lection was performed. Each iteration of data acquisition was
informed by a spatial sensitivity analysis, which identified re-
gions with high model uncertainty and guided sample placement
for optimal refinement. To enhance the predictive accuracy and
reliability of the vertical surface roughness model, an additional
round of data collection was performed. Each iteration of data
acquisition was informed by a spatial sensitivity analysis, which
identified regions with high model uncertainty and guided sam-
ple placement for optimal refinement. The first dataset com-
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FIGURE 7. RK predictions of surface roughness and spatial sensi-
tivity analysis for Dataset 3, showing: (a) surface roughness; and (b)
spatial sensitivity for Dataset 3.

prised 26 sample locations, strategically chosen based on initial
process parameter variations. After assessing the model’s predic-
tive performance and identifying high-sensitivity regions, a sec-
ond dataset with 33 samples was obtained by adding the initial
data with the newly collected data, focusing on areas where the
model exhibited significant uncertainty. Finally, a third dataset
expanded the sampling coverage to 41 locations, further improv-
ing model convergence. This iterative approach ensured that ad-
ditional data points were placed in areas where they would have

FIGURE 8. An outline of all initially tested points in the sample space
in addition to the newly added sample locations from tests 2 and 3.

TABLE 3. Performance metrics of Dataset 1 and Dataset 2 with re-
spect to the final dataset.

MSE MAE MAPE number of samples

Dataset 1 1.52 1.01 2.35% 26

Dataset 2 0.68 0.69 1.72% 33

the highest impact on reducing prediction errors, leading to a
more robust and generalizable surface roughness model. The fi-
nal dataset, seen in figure 7, demonstrated a marked improvement
in predictive accuracy, as reflected in reduced mean squared error
(MSE), mean absolute error (MAE), and mean absolute percent-
age error (MAPE) when compared to earlier models.

A ground truth was established for the sample space to
effectively compare the improvement between Dataset 1 and
Dataset 2. A third and final series of tests were performed to act
as ground truth and allow for a retrospective comparison of the
original and refined model. Figure 8 outlines the added sample
locations.

The final converged model allows for a direct comparison
between the initial and refined models. MSE, MAE, and MAPE
were calculated for datasets 1 and 2 relative to Dataset 3, which
serves as the ’ground truth.’ The entire sample space predictions
were evaluated against Dataset 3, and Table 3 summarizes the
errors for datasets 1 and 2.

To quantify the performance improvements, the error met-
rics for Dataset 1 and Dataset 2 were evaluated relative to
Dataset 3. Table 3 presents the results, illustrating a clear reduc-
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tion in errors as additional data was incorporated. The second
dataset showed significant improvement over the first, with MSE
decreasing from 1.52 to 0.68 and MAPE dropping from 2.35%
to 1.72%. The reduction in maximum error further demonstrates
how the iterative refinement process led to a more reliable and
generalizable model.

4 Conclusion
This study has demonstrated the effectiveness of the KRISP-

Uncertainty algorithm in making and refining predictions of ver-
tical surface roughness in laser powder bed fusion. Through suc-
cessive rounds of data collection and spatial sensitivity analy-
sis, the model successfully identified high-uncertainty regions,
allowing for targeted sample placement and improved predictive
accuracy. The results confirmed the model’s ability to optimize
surface roughness predictions while minimizing sampling. With
the addition of only 7 points the model’s average error was re-
duced by 68.3%.

The findings also reinforce the well-established influence of
process parameters, particularly laser power, on surface rough-
ness. This study further highlights the importance of an adaptive
data-driven approach in refining predictive models. The use of
Kullback-Leibler Divergence (KLD) in the design of the exper-
iments framework provided a systematic Bayesian method for
improving model accuracy, ensuring that additional data collec-
tion was focused on areas of greatest uncertainty.

Future work could explore integrating additional factors
such as scan strategy and powder properties to further enhance
model robustness. Additionally, applying this methodology to
real-time monitoring and control in laser powder bed fusion
could provide a path toward adaptive manufacturing processes.
Overall, the results demonstrate a practical and efficient approach
to improving surface roughness modeling, contributing to en-
hanced process optimization and quality control in additive man-
ufacturing.
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