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ABSTRACT

State of charge (SOC) is a key parameter that provides infor-
mation about a battery’s stored energy. Knowing state of charge
is essential for developing accurate models to predict battery be-
havior within a system and for next-generation battery control
schemes. This research investigates the use of strain monitoring
and machine learning to estimate a cell’s state of charge. To do
this, hoop strain measurements at the middle of a 18650 Nickel-
Manganese-Cobalt Oxide (NMC) cell (Samsung 30Q cell) are
collected, parameterized, and fed into a neural network to predict
the state of charge. Experimental results obtained in this work
show that a simple multi-layer perceptron model that can predict
the SOC of a cell during discharge with an RMSE of 0.0886.
The strain measurement modality adds a mechanical aspect to
the typical approach of measuring the cell’s voltage and current
flow. By leveraging the repeatable deformation of the battery that
occurs during charge and discharge cycles, the proposed method
offers a non-invasive and simplified approach for state of charge
estimation. This technique has the potential to enhance battery
management systems and improve the efficiency and reliability
of complex battery-powered applications. Even a slight exten-
sion of a lithium-ion battery’s remaining useful life can lead to
significant cost savings across various applications.

Keywords: Deep neural networks, battery modeling, battery
strain, machine learning, energy storage, battery safety

1. INTRODUCTION

Battery management systems (BMS) are essential electronic
control units designed to ensure the safe, reliable, and efficient
operation of lithium-ion batteries [1]. These systems monitor
parameters such as voltage, current, and temperature to estimate
State of Charge (SOC). While current and voltage measurements
are the dominating method of determining SOC, there can be
inaccuracies if measurements are not calibrated [2]. Adding
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another measurement would be beneficial to more complex BMS
systems. While there are other works looking at the expansion of
pouch cells, the study of strain gauges on 18650 cylindrical cells
is a novel concept that should be explored further. This work
explores using the multi-layer perceptron (MLP) neural network
(NN) to estimate SOC based on strain rather than traditional
measurements. This method of calculating SOC could expand our
understanding of batteries and allow for more advanced control
of battery systems. The work aims to prove that a MLP NN can
utilize strain alone as a valid means to predict SOC.

Artificial neural networks are computational systems mod-
eled after the way biological neurons work in the brains of an-
imals and humans. They consist of a number of simple units
called neurons which are working in parallel to send information
along directed connections to each other [3]. The best-known
and most widely used form is the multi-layer perceptron (MLP),
which is a type of feed-forward NN that consists of an input layer,
one or more hidden layers, and an output layer. Each hidden
layer applies weighted linear combinations of its inputs followed
by non-linear activation functions. During training, the network
learns to adjust these weights to minimize the difference between
its predictions and the actual target values [4]. MLPs are well-
suited for problems involving low-dimensional feature sets with
a non-linear relationship between inputs and outputs.

The MLP can be trained using strain because lithium-ion bat-
teries undergo complex electrochemical and mechanical changes
as it charges and discharges. Lithium ions enter the graphite an-
ode and through intercalation fill the structure causing reversible
expansion. Figure 1 shows the stages of the lithium ions as they
leave the graphite anode through discharge. However there is also
non-reversible expansion in the battery due to growth of the solid
electrolyte interface (SEI) and other factors. This work aims to
train an MLP to estimate SOC using only strain data. Strain on the
battery is primarily caused by the intercalation and non-reversible
expansion [5]. Using a wide assortment of discharge data, the
model aims to overcome the non-reversible strain by identifying
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FIGURE 1: Intercalation stages of the lithium-ion battery discharg-
ing.

the shape of the strain curve using only the data given to it. By
showing the MLP can function only using strain it can verify that
strain would be a potential vector to enhancing other models that
use more traditional methods of SOC prediction with voltage and
current.

The contributions of this work are twofold, 1: propose an
ML framework that estimates SOC from hoop strain data and
2 present experimental data that correlates the non-linear rela-
tionship between strain and SOC due to the delithiation of the
graphite anode.

2. METHODOLOGY
This section discusses the experimental setup of the battery
discharge data collection and the model design of the MLP.

2.1 Experimental Data Collection

To train the model, a dataset of a NMC cell under charge
and discharge cycles was collected [6]. The cell was cycled at 1C
(3 A) charge and discharge while voltage, current, temperature,
and strain were collected at a sampling frequency of 1Hz for
approximately 650 cycles. A rate of 1C was decided due to the
interference above 2C where lithium plating can cause excessive
strain [7]. As seen in figure 2a, the strain gauge and thermocouple
were both fastened to the center of the battery. To charge and
discharge the cells we used an NHR 9200 battery test system to
control the tests seen in figure 2b. From the data, capacity was
determined enabling an accurate baseline estimate of SOC for
training. Each battery was cycled at a 100% depth of discharge
(DoD). Batteries were charged at 1C to 4.2 V with a constant
voltage (CV) section down to 0.15 A. Then the discharge was
a constant current 1C discharge of 3 A to a voltage of 2.5 V.
There was no CV section for the discharge because we wanted a
consistent rate of discharge for our tests. Tests were performed
in a temperature chamber that maintained a constant 20°C to
minimize the effect of temperature.

2.2 Model Design

A relationship between strain and SOC appears to exist given
the consistency in the shape of the strain curve during constant
current discharge cycles. However, this relationship is non-linear
and that makes it difficult to quantify SOC given a typical linear

05/15/2025

Samsung 30Q

thermocouple

strain gauge

(a) Battery with strain gauge and thermocouple.

temperature chamber
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FIGURE 2: Battery testing setup. (a) shows the strain gauge and
thermocouple mounted on the battery; (b) shows the lab setup
where testing was conducted.

regression model. Moreover, there is no known physics-based
equation to find SOC from given a strain value, so a data-driven
approach is appropriate. With these issues in mind, a NN was
chosen as an alternative to traditional methods such as Coulomb
counting or voltage measurements. With simplicity as a motiva-
tor, the type of model chosen was an MLP. The MLP contains
a single input as strain, three hidden layers with 64 nodes in the
first and 32 in the second and third, and one output layer for the
predicted SOC value as seen in figure 3. The activation function
for the model was Rectified Linear Unit (ReLU), which outputs
the input if it was positive, and zero otherwise. The loss func-
tion used during training was mean squared error (MSE), and the
test sets were evaluated using root mean squared error (RMSE).
The NN was trained using a gradient-based algorithm called the
Adam optimizer. A constant learning rate of 0.001 was used
throughout training to control the step size of weight updates. To
improve generalization and prevent overfitting, L2 regularization
was applied with a strength of 0.0001.

An issue with using single point strain data as an input to the
model is that it does not account for the non-linear deformation
over time during charge and discharge. This change is also not
monotonic or instantaneous, meaning the difference can vary

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited.

20of4



Approved, DCN# 2025-5-1-911 05/15/2025

. hidden layers 1.0 7
input layer i o
" H 0 "
.‘ (]
\\”I 4\\')’[; A\\'ll %ﬁ 0.6 1
AN \\":r outout g
A’AA’L°A’M’L°A’M’L° o 047
N Wi ) =}
'4» HM\HMW “ 0
.0,0,.© - ~
//M AH//A 0.0 actual SOC predicted SOC ™
0 500 1000 1500 2000 2500
time (s)

FIGURE 3: Diagram of the Neural Network being used for the SOC
model. FIGURE 5: Result of MLP after training on dataset of 631 files for
cycle 578 RMSE=0.0475.

TABLE 1: Error metrics between actual and predicted SOC for cycle

from cycle to cycle. Rather than relying on a single point of strain, 578
a window of strain data was used to extract descriptive statistical Metric Value
features. This approach captured dynamic behavior over time and
reduced the effect of sensor noise in the datasets from possible MSE 0.002254
issues during the experimental setup and was expected to improve RMSE  0.047477
generalization in the model so that overfitting would be mitigated. MAE 0.033308
The features extracted included maximum, minimum, standard
deviation, slope, and mean.
3. RESULTS

The dataset was split into 80% for training and 20% for test- Preliminary investigations show that due to the unique nature
ing. The training iterated through a maximum of 1000 epochs be- of the battery strain as the cell degrades, the MLP model will be
fore stopping. However, if the loss improvement between epochs able to create a correlation between SOC and strain successfully.
was less than 0.0001 for two consecutive iterations, the training Initial data appears to show that using different features of the
stopped early. The performance of the model was monitored with strain measurement can relate to the intercalation stages of a
a training loss curve, seen in figure 4, as well as testing RMSE lithium-ion battery and predict SOC.
per cycle. Feature importance was also recorded across the train- To start the verification of the MLP a trivial dataset of 10
ing set, showcasing the mean change in MSE if the weights and random discharge cycles was fed into the model. The MLP
biases associated with that feature were changed. successfully executed using 8 cycles for training and 2 for testing.

The two tests resulted in a RMSE of 0.1291 an acceptable start
for such a low amount of data. After verifying the model was
functioning as intended another test was performed with 100

random cycles. This test trained on 80 cycles and tested on 20
0.125 - with an average RMSE of 0.1008. This improvement showed
’ that the MLP was improving with more data. Finally, the MLP
_0.100 1 received all the data, roughly 631 cycles, this resulted in a final
=2 RMSE of 0.0886. This showed additional improvement with
2. 0.075 - more data and some tests had an error as low as 0.0478. The best
@ performing data is shown in figure 5.
= 0.050 A
0.025
0.000 = , T .
0 10 20 30
iterations

FIGURE 4: Loss value obtained through the training of the NN mea-
sured in MSE.
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FIGURE 6: Feature importance values of the different features from
the window.

The model is able to train relatively quickly as seen in figure 4
with less than 40 iterations before finishing training. Looking at
figure 6 the maximum of the window is the most important train-
ing feature with other features having similar relative importance.
It is interesting to note that in general the model works better for
later data and spikes in error for cycles between 50 and 350 cy-
cles. Further investigation of this trend could identify if there is a
problem with the MLP or if more data is needed to be consistent.

4. CONCLUSION

This paper presented an approach to using strain measure-
ments from a single strain gauge on a 18650 cell to predict SOC
using an MLP with windowed data. By correlating battery cas-
ing strain directly with the lithium intercalation processes, the
MLP model effectively captured the underlying electro-chemical-
mechanical relationships inherent to battery operation. The find-
ings show that not only is SOC able to be predicted by the MLP
but that the accuracy increases with more data showcasing the
potential of this approach to be expanded with a larger dataset.
By adding this method with other traditional approaches modern
BMSs could further mitigate error in SOC calculation.

Future work should investigate more cells to verify that this
method is not isolated to a single cell. Additionally, this work
could be expanded to use other more traditional methods of SOC
measurement and potentially provide additional resolution for
more complex models.
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