

Optimized Coding and Parameter Selection for Efficient FPGA Design of Attention Mechanisms

Computation output of 1St Tile

Ehsan Kabir, Austin R. J. Downey, Jason D. Bakos, David Andrews, Miaoqing Huang

Introduction

- Deep neural networks (DNN) have shown significant advancements in natural language processing, machine translation, computer vision.
- An important feature named attention mechanism within any DNN enables a high level of computational parallelism for both the training and inference phases.
- Suitable for acceleration on hardware like FPGAs, due to FPGA's high degree of parallelism, low latency, and energy efficiency.
- We optimized high level synthesis (HLS) code to increase parallel DSP consumption.
- We introduced an efficient tiling technique and optimized the value of parameters within an attention layer to improve latency without exhausting computational and memory resources.

Accelerating the Computation within the Attention Layer of a Neural Network

- A novel architecture to enhance parallel processing within the attention layer.
- An efficient coding in HLS to ensure high utilization of DSPs.
- An efficient tiling of weight matrices to accommodate large models in on-chip memory.
- A theoretical model validating both predicted and experimental latency.

Tiling Technique

Load inputs into the Input BRAM		Load Values of Each Tile into Weight BRAM							
		Tile 1	Tile 2	Tile 3	Tile 4	Tile 5	Tile 6		
$\left[\begin{array}{cc} X_{00} & X_{01} \\ X_{10} & X_{11} \end{array} \right]$	$\begin{bmatrix} X_{02} \\ X_{12} \end{bmatrix} \times$	$\begin{bmatrix} W_{00} \\ W_{10} \\ W_{20} \end{bmatrix}$	$W_{01} \ W_{11} \ W_{21}$	$W_{02} \ W_{12} \ W_{22}$	$W_{03} \ W_{13} \ W_{23}$	$W_{04} \ W_{14} \ W_{24}$	$\left[egin{array}{c} W_{05} \ W_{15} \ W_{25} \end{array} ight]$		
1 St Iteration: Computation with 1 St Tile									

 $\begin{bmatrix} X_{00} & X_{01} & X_{02} \\ X_{10} & X_{11} & X_{12} \end{bmatrix} \times \begin{bmatrix} W_{00} \\ W_{10} \end{bmatrix} \longrightarrow \begin{bmatrix} X_{00}W_{00} + X_{01}W_{10} + X_{02}W_{20} \\ X_{10}W_{00} + X_{11}W_{10} + X_{12}W_{20} \end{bmatrix}$ 2nd Iteration: Computation with 2nd Tile

nth Iteration: Computation with nth Tile

Final Matrix = Output for 1st tile + Output for 2nd tile ++ Output for nth tile

Background

The input sequence X is linearly mapped into Query (Q), Key (K), Value (V) matrices using weights and biases. The parameter dk = dmodel/h is the 2nd dimension of Q and K. dmodel is a hyperparameter called embedding dimension and h is number of heads.

Accelerator Architecture for Attention Mechanism

Algorithm 4 Q, K, V Calculation Algorithm 2 Load Weights : for $(i = 1; i \le \frac{Embedding\ Dimension}{Number\ of\ Heads}; i = i + 1)$ do : for $(i = 1; i \le Sequence\ Length; i = i + 1)$ do #pragma HLS pipeline off

HLS Design Technique

for $(k = 1; k \le \frac{d_{model}}{k}; k + +)$ do #pragma HLS pipeline II = 1 for $(j = 1; j \le Tiles; j + +)$ do $S_q \leftarrow S_q + x[i][j] \times w_q[k][j];$ $S_q \leftarrow S_q + x[i][j] \times w_k[k][j];$ $S_q \leftarrow S_q + x[i][j] \times w_v[k][j];$ $Q[i][k] \leftarrow Q[i][k] + S_q;$ $K[i][k] \leftarrow K[i][k] + S_k;$ $V[i][k] \leftarrow V[i][k] + S_v;$

17: **end for**

#pragma HLS pipeline off for $(j = 1; j \le Tiles; j = j + 1)$ do #pragma HLS pipeline II = 1 $w_q[i][j] \leftarrow weights_Q[index];$ $w_k[i][j] \leftarrow weights_K[index];$ $w_v[i][j] \leftarrow weights_V[index];$ $index \leftarrow index + 1;$ 10: **end for Algorithm 3** Load Biases 1: for $(i = 1; i <= \frac{Embedding\ Dimension}{Number\ of\ Heads}; i = i + 1)$ do #pragma HLS pipeline II = 1 $q[i] \leftarrow bias_Q[index];$ $b_k[i] \leftarrow bias_K[index];$ $b_v[i] \leftarrow bias_V[index];$ $index \leftarrow index + 1;$ 7: end for

Analytical Model

 $LI = [(d_{model} - 1) \times 1 + PD_L] \times SL$ $LB = \left(\frac{d_{model}}{L} - 1\right) \times 1 + PD_L$ $LIA = [(TS - 1) \times 1 + PD_L] \times SL$ $LWA = \left[\left(\frac{d_{model}}{L} - 1 \right) \times 1 + PD_{L} \right] \times SL$ $SA = \left[\left(\frac{d_{model}}{b} - 1 \right) \times 1 + PD_MHA \right] \times SL$ $BA = \left[\left(\frac{d_{model}}{L} - 1 \right) \times 1 + PD_BA \right] \times SL$ $S = [(SL - 1) \times 1 + PD_S] \times SL$ $SV = \left[\left(\frac{d_{model}}{l} - 1 \right) \times 1 + PD_SV \right] \times SL$ No. of $DSPs = 9 \times h + 3 \times h \times TS + 2 \times SL \times h +$ $2 \times d_{model}$ $LAT_{total}(cc) = LI + LB + LIA + LWA +$ SA + BA + S + SV $LAT_{total}(cc) \times 10^3$ $LAT_{total}(ms) = 1$ Frequency (Hz)

Accelerator Architecture

- Designed with C in Vitis HLS.
- Three main processing modules:QKV_{PM}, QK_{PM} and SV_{PM} . QKV_{PM}: Generates Q, K, V matrices. QK_{PM}: Matrix-matrix multiplication operations between the Q and K matrices.
- SV_{PM}: Matrix-matrix multiplication operations with V and the output from QK_{PM} .

Choosing Optimum Head Number **Choosing Optimum Tile Size**

Validation of Experimental and Analytical Results

validation of Experimental and Analytical Results									
Method	Sequence Length	Embedding Dimension	Number of Heads	Tile Size	DSL2	Frequency (MHz)	Attention (SA)		
Experimental	6.1	768	8	64	4157	400	0.94		
Analytical	64				4168		0.98		
Experimental	22	768	8	64	3898		0.534		
Analytical	32				3656		0.579		
Experimental	6.1	512	8	64	3887		0.597		
Analytical	64	512		04	3656		0.592		

References

- [1] E. Kabir et al., "Accelerating lstm-based high-rate dynamic system models," in FPL Conference, 2023.
- [2] B. Li et al., "Ftrans," in International Symposium on Low Power Electronics and Design, 2020.
- [3] E. Kabir et al., "Protea," in SC24-W: Workshops, 2024.

