
Introduction
• Deep neural networks (DNN) have shown
   significant advancements in natural language
   processing, machine translation, computer vision.
• An important feature named attention mechanism
   within any DNN enables a high level of
   computational parallelism for both the training
   and inference phases.
• Suitable for acceleration on hardware like FPGAs,
   due to FPGA's high degree of parallelism, low
   latency, and energy efficiency.
• We optimized high level synthesis (HLS) code to
   increase parallel DSP consumption.
• We introduced an efficient tiling technique and
   optimized the value of parameters within an
   attention layer to improve latency without
   exhausting computational and memory resources.

Background
  The input sequence X is linearly mapped into
  Query (Q), Key (K), Value (V) matrices using 
  weights and biases. The parameter dk = 
  dmodel/h is the 2nd dimension of Q and K.
  dmodel is a hyperparameter called embedding
  dimension and h is number of heads. 

Accelerator Architecture
• Designed with C in Vitis HLS.
• Three main processing modules:QKVPM , QKPM

   and SVPM. QKVPM : Generates Q, K, V matrices.
   QKPM : Matrix-matrix multiplication operations 
   between the Q and K matrices.
• SVPM : Matrix-matrix multiplication operations
   with V and the output from QKPM.

 • An efficient coding in HLS to ensure high utilization of DSPs.

Accelerating the Computation within the 
Attention Layer of a Neural Network

 • A novel architecture to enhance parallel processing within the
   attention layer.

• An efficient tiling of weight matrices to accommodate large models
  in on-chip memory.
• A theoretical model validating both predicted and experimental 
   latency.
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