
Introduction
• Transformer neural networks (TNN) have
 demonstrated significant advancements in
 natural language processing, machine translation,
 computer vision.
• A remarkable feature named multi-headed
 attention (MHA) mechanism enables a high level
 of computational parallelism for both the training
 and inference phases.
• Suitable for acceleration on hardware like FPGAs,
 due to FPGA's high degree of parallelism, low
 latency, and energy efficiency.
• Most of the FPGA or ASIC-based accelerators for
 TNN have specialized sparse architecture for a
 specific application. Thus, they lack the flexibility
 to be reconfigured for a different model during
 runtime.
• We applied efficient tiling and wrote efficient high
 level synthesis (HLS) code to increase parallelism
 for dense computations of MHA.

Background
 The input sequence X is linearly mapped into
 Query (Q), Key (K), Value (V) matrices using
 weights and biases. The parameter dk =
 dmodel/h is the 2nd dimension of Q and K.
 dmodel is a hyperparameter called embedding
 dimension and h is number of heads.

Accelerator Architecture
• Designed with C in Vitis HLS.
• Three main processing modules:QKVPM , QKPM
 and SVPM. QKVPM : Generates Q, K, V matrices.
 QKPM : Matrix-matrix multiplication operations
 between the Q and K matrices.
• SVPM : Matrix-matrix multiplication operations
 with V and the output from QKPM.

Accelerating the Computation within the
Attention Layer of the Transformer

 • A novel architecture ensuring high BRAM and DSP utilization for
 efficient parallel processing with low latency.

• An efficient tiling of weight matrices to accommodate large models in
 on-chip memory.

• 3.28× and 2.6× faster than the Intel Xeon Gold 5220R CPU and
 NVIDIA V100 GPU respectively.

• 1.3× faster than the fastest state-of-the-art FPGA-based accelerator.

Tile 1 Tile 2 Tile 6

Tile 1

Tile 3 Tile 4 Tile 5

Tile 2

Load inputs into the
Input BRAM

Tile n

Load Values of Each Tile into Weight BRAM

1st Iteration: Computation with 1st Tile

2nd Iteration: Computation with 2nd Tile

nth Iteration: Computation with nth Tile

Computation output of 1st Tile

Computation output of 2nd Tile

Computation output of nth Tile

Final Matrix = Output for 1st tile + Output for 2nd tile ++ Output for nth tile

Comparison with Other Acceleration Platforms

Comparison with Other FPGA Accelerators

Process for Incorporating Programmability

FAMOUS: Flexible Accelerator for the Attention Mechanism
of Transformer on UltraScale+ FPGAs

Ehsan Kabir, Md. Arafat Kabir, Austin R. J. Downey, Jason D. Bakos, David Andrews, Miaoqing Huang

Accelerator Architecture for Attention Mechanism

Tiling Technique

Pytorch Model
(.pthfile)

Interpreter
(Python code)

Value of
Reconfigurable

Parameters

Software
Development Kit

(Xilinx SDK)

Send Generate Send

Instructions &
Control Signals

Software (C/C++)
Running in
Processor

AcceleratorGenerate

Develop

Software
Development Kit

(Xilinx SDK)

Send

TNN_model.pth

sub_string =['EncoderLayer , DecoderLayer, 'ff', 'linear', 'linear2']
count_er = 0

start_index = 0
for i in range(len(a)):

j = a.find(sub_string[0],start_index)
if (j !=1):

start_index = j+1
count_er +=1

print ("Total Encoders are: ", count_er)

Total Encoders are: 12
Total Decoders are: 12
Total Heads are: 12
Hidden Dimension: 768
Feedforward Dimension: 3072

Overall Result for MHA Accelerator

Download This
Poster

