
Introduction
• Transformer neural networks (TNN) have
   demonstrated significant advancements in
   natural language processing, machine translation,
   computer vision.
• A remarkable feature named multi-headed
   attention (MHA) mechanism enables a high level
   of computational parallelism for both the training
   and inference phases.
• Suitable for acceleration on hardware like FPGAs,
   due to FPGA's high degree of parallelism, low
   latency, and energy efficiency.
• Most of the FPGA or ASIC-based accelerators for 
   TNN have specialized sparse architecture for a 
   specific application. Thus, they lack the flexibility
   to be reconfigured for a different model during
   runtime.
• We applied efficient tiling and wrote efficient high
   level synthesis (HLS) code to increase parallelism
   for dense computations of MHA.

Background
  The input sequence X is linearly mapped into
  Query (Q), Key (K), Value (V) matrices using 
  weights and biases. The parameter dk = 
  dmodel/h is the 2nd dimension of Q and K.
  dmodel is a hyperparameter called embedding
  dimension and h is number of heads. 

Accelerator Architecture
• Designed with C in Vitis HLS.
• Three main processing modules:QKVPM , QKPM
   and SVPM. QKVPM : Generates Q, K, V matrices.
   QKPM : Matrix-matrix multiplication operations 
   between the Q and K matrices.
• SVPM : Matrix-matrix multiplication operations
   with V and the output from QKPM.

Accelerating the Computation within the 
Attention Layer of the Transformer

 • A novel architecture ensuring high BRAM and DSP utilization for
   efficient parallel processing with low latency.

• An efficient tiling of weight matrices to accommodate large models in
  on-chip memory.

• 3.28× and 2.6× faster than the Intel Xeon Gold 5220R CPU and
   NVIDIA V100 GPU respectively.

• 1.3× faster than the fastest state-of-the-art FPGA-based accelerator.
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sub_string  =['EncoderLayer  , DecoderLayer, 'ff', 'linear', 'linear2']
count_er = 0

start_index = 0
for i in range(len(a)):

j = a.find(sub_string[0],start_index)
if (j !=1):

start_index = j+1
count_er +=1

print ("Total Encoders are: ", count_er)

Total Encoders are: 12
Total Decoders are: 12
Total Heads are: 12
Hidden Dimension: 768
Feedforward Dimension: 3072
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